‘;’_La 1S3 - 3aldll

J

{Atoz 1z}

Tacebook E‘rotga : A to Zi Ko

A g ¢ Alaall S ¢ glall 4 30

~ £
0931497960 v .l-(What's app-Telegram) s sl (SMS) frai s ys il jualaall il Sy

SOLVING PROBLEMS BY
SEARCHING

D.Maha wehi

Outline

Problem-solving agents
Problem types

Problem formulation
Example problems
Basic search algorithms

The process of looking for a sequence of actions that
reaches the goal is called search.

A search algorithm takes a problem as input and returns
a solution in the form of an action sequence.

die e G Cled al) ol Cllaadl (e Al 3) a8 Jall aa8 o5 A ACEA 2l Ll 8) Clae) A e Tase a5
el dall e Jsanlly Cargdl) J saa)

(S cilaa)l o8)i 5 (351 yha Baey oy Caadll a5 StAte SpACe Al cliad A Jla e dadll Gyl e JSL) Jag o 58y (oaiiall £1SA)
fdant oSy Sl iyl 53 (o8 Loy T cliad oo Lad

O Ja U5 o il e aailal) oSG e 13a) 5 1 g8 Jaadll 13 Caay
CASEL Ja ;3\5}
Giat (3 o A Juadl) (8 U SH LSy agdlal (b adindy s LSHY) #3890 oy) Gl ihal) (s
Slo Vil skt Al Ues agdad) aadly Gaan s e 1506 Jeldll IS 1Y) Blal o) el
Ll Sl L8 4S5 s
n aal Glo QS5 ol e g iy Hpalae Allany @iy Liles pArad At b S5 Jiss
el sl
(5l 5 el (e 3 5 54
cizila s)l Aall) yueati
dgrglall Ll g a5
(o WS) L shall o laiuyl
A) e el gasll Caiai

a2 & M agll &yl s el sl DU ALE e 5 SN 4 JS G o (il
S Jandl G e (s) Sy s A g A seasll i Sl iy of kil (e sl
I OSSR A Jaasi 5 Al (o 2y 3all (50 a0l 8 Cans i g) e Y
: N

Leising QS ol Jglay) Calaall (e aall (53 5k e & gbaad) andali B CilaaY) aelis

da b sV sshall o (JSol) o)l (ulllag Jal) aagll e by dilaY) ddlua)
Gy LA

aagll ¢ pm 8 dlgile) pe camy SN VA5 Gl jaY) aaad Alee a AlSial) AeLua

Problem Solving Agent .cosad ds Uss e Gl e Gualil) 53850 (e 13al 5 16 53 Juaill 138 Cauay

Problem-solving agent: a type of goal-based agent
Calaal) e Gaaldl) (DSl e g g5 SEl Ja JS

The process of looking for such a sequence of actions is called
search C'.x;ﬂ\ (el C.ﬁ\c«\);}” %) Aol s Jia o g_x;\]\ :_\.Lu:

B8 el Gulia s sl ol) e 2Ly 1Caagdl delua
Goal formulation: based on current situation and agent’s

performance measure

Problem formulation: deciding what actions and states to consider,
given a goa| Caagll eV 8 38 ae dgdle] pe cang) VLAl e jaY) paat AL Atlua

(Uil Jay s ity 5 Cangll e (aalldl) S5l) i (e p s ot r 8Ll Jag ¢ygas by cpdl) ¢3S
(action)3asall Jadll 4a A 5 bsdll (1« (percept) < ki alin (S 5 13 palall Al

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq, an action sequence, initially empty el Jals Y said)
state, some description of the current world state A8 U 08 Ay chassl) L o s Al JdY) ALl Seq

(3SR (Faay el 128)JS 5l Al AN State
robl oblem f lati null oS Ll G Qll s sl A J sl 3l gl :Gool
problem, a problem formulation AUl Lgnn oo 3l sl <Problem

goal, a goal, initially null

state — UPDATE-STATE(state, percept) — <daiiwall o sl Aal) digly o sii
if seq 1s empty then 42 6 Laua) Qi) Aada s 13)
goal — FORMULATE-GOAL(state)

problem — FORMULATE-PROBLEM(state, goal) aagl 5 Al el e dalaie) Allsal) Axpa yyaa3
seq +— SEARCH(problem) ALl s3gd dAnliall Jlad¥) Alulis & Lo ypaas
if seq = failure then return a null action Adlall Al ~Uiall Jadl) 58 Lo dpaaty 2 683 138 S 22y
action «+— FIRST(seq)
seq — REST(seq) seq Jsaiall Adall Jund) gm0 o

return action

Baal 5 el) 2y 43 AE Ja Lals (e) lel) (e Al (e Eiag AlSEa g i A luay V5 4 58 1dSUaA)) Jad Jasaw JiS g
aa e fas SAT 8o ¢ geay ald i JaS Levie (5531 5k

Example: Romania

On holiday in Romania; currently in Arad.

Flight leaves tomorrow from Bucharest
7] Oradea

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Craiowa

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Problem types

Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable - sensorless problem (conformant problem)
multiple-state problefys! s dis s ks wike oo s gl 4 0

Agent may have no idea where it is; solution is a sequence

Nondeterministic and/or partially observable = contingency problem i . ax:.

percepts provide new information about current state often interleave
{ search, execution} (sl) dlee JA1H L Ulle a0 Al Jsn suta e slae SIS aall 3 55
7

Unknown state space = exploration problem

2025/12/23 8

Problem types

Deterministic, fully observable - single-state problem
Agent knows exactly which state it will be in;

Vacuum world = everything observed 1 [2
Romania = The full map is observed ox | A iR
3 | =) 4
Single-state: Start in #5. R oo
Solution?? 5 | =) 6
[Right, Suck] =
7 | =) 8

SEL MR

Problem types

Non-observable - sensorless problem (multiple-state problem)

Agent may have no idea where it is; solution is a sequence
Vacuum world = No sensors

Romania = No map just know operators(cities you can move 3

tO) _ CVLaaY) S oaie (&1 e shaa (sf 4gal G
multiple-state problem : Startin{1, 2, 3, 4,5, 6, 7, 8}

e.g., Right goesto {2, 4, 6, 8}. .o wyniss
Solution??
[Right, Suck,Left, Suck]

A e S8 Jlaial e €I Al action JS

Q Initial state:
start with one of the set {1, 2, 3, 4, 5, 6, 7, 8}.

0 Goal: {7,8}.

U Solution? [right, suck, left, suck]
~Right =2 {2; 4; 6; 8}
#Suck = {4; 8)
Fleft > (3;7)
»Suck > {7}

5

7

N (1) [[k

SIS

Problem types

Nondeterministic and/or partially observable - contingency problem
percepts provide new information about current state

1 |= 2 =)
. Jeans o oS &)l Alls ol B ool e
Contingency: [L,clean] 45 81 Jo i g5 s [, —
. 1 3200 2 sles iy 5 5kaa S
Start in #5 or #7 : = o2
Solution?? 5 [6 4
[Right, if dirt then Suck] i e
Jlss daslae zliny action JS J 7 [8 4

Unknown state space = exploration problem
Vacuum world = know state of current location
Romania = know current location and neighbor cities

Single-state problem formulation

A problem can be defined formally by five Components
Initial state

Actions

Transition model description of what each action

does (successor)
Goal test
Path cost

Problem Formulation (The Romania Example) BOredes

75

State: We regard a problem as state space .l oLas dlie ASE) iins ,
here a state is a City 1
Initial State: the state to start from Ayl Al A
In(Arad)

=Mt e . - - i S O Hirsova
Successor Function:. S(x) = set of action—state pairs R :

dm‘} SIEN e :\33}4 C‘}J‘Y\ e :%.C)m i . Efa rie
e.g., S(Arad) = {<Arad 2 Zerind, Zerind>, ... }

Goal Test: determine a given state is a goal state. ., yan. s dim. s soas ingd sl

explicit, e.g., x = "at Bucharest" (S i g Agaal Jgea gl 1l
|mp|IC|t, e.g., NODlrt(X) Y ol C.uuA C")‘d\ Ja il Ls“"‘
Path Cost: Additive. (aS)) el Al G daddii &5 Sl Sle) a¥) aae clibuall g sane (JUall dass e

—e.g., sum of distances, number of actions executed, etc.
— ¢(x,a,y)is the step cost, assumed to be =0

Solution: a sequence of actions leading from the initial state to a goal state

Example: Romania (fig 3.2)

=] Cradea

Example: The 8-puzzle (ig3.4)

7100l 2 || 4 1
5 6 4
8 ||| 3| 1 7
states? locations of tiles
. N Start State Goal State
actions? move blank left, right, up, down
goal test? = goal state (given)
path cost? 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard]
2025/12/23 15
Fragment of 8-Puzzle Problem Space
1]2[3
4
7165
11 |3 1723 1723 2[3
8l2|4 8|4 6|4 8|4
716]5 7|6]5 7] |5 6|5
1[3] [1]3 112 112[3] [1]2]3] [1]2]3 2 1]2[3
8|2|4| [8|2[a| [8la|3| [8[a|5| [8]6|4| [B8]6]4] [1]8 784
7|6|5| [7|6|5| [7]6]5] [7]6 7|5] [7]5 7|6 6/5
8[1]3] [1[3[4] [1] [2] [1]2]38] [1]2]3] [1]2]3] [2 1]2]3
2(4| [8]2 8|4|3| [8]4]5 6|4 [8]6 18 784
7|6|5| [7|6|5| [7|6|5| [7| |6| [8]7|5| [7|5|4]| [7|6 6| |5

16 © Daniel S. Weld

Vacuum world state space graph (ig3.3)

states? integer dirt and robot location
actions? Left, Right, Suck

goal test? no dirt at all locations

path cost? 1 per action

2025/12/23

C

C

Etﬂ#
>

17

Fe [T [F)"
D (2
- | dﬂaﬂ
A

Tower of Hanoi

LR

FOBIMON ¢

States: disks location in the three possible positions
Initial State: All disks in position 0
Successor function: move disk between positions (with constraints)
Goal test: All disks in position 2

Path cost: 1 per move

Gl B ad cla)l A
ZUal V) eliad JalS Gandip dle el da e il sa Cilia)) 530 o328 (e Cagl)
search tree s b :\.AJS]\ Al fas L;"d\ Alaiaal)l Jladl) eobudad IS5 (Jlady) Jadas s Jall
actions s <s al 2 (branches) & s, ¢root 5 il)3 (initial state) 4 s¥) Alad) Jics Cua

Tree search algorithms

function TREE-SEARCH(problem) returns a solution, or failure
mitialize the frontier using the initial state of pmbi’emwé_} sl 5 Alleaall AAEN1 AN e Ialaie) il 5y R o Ay
loop do
if the frontier is empty then 1'etlurn failure b) s it o siall i ol VL)) en (a5 13)
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Loy 505 Bl il S o el (a5 5050 AL 0 1ol N4 gl
o) A sl Bapaa) el i 838al) 038 a5 o 55 V) 5 AU o3g] Jiliall Jal s Cana ALl 4 S 13
Cindl 5 e

search tree ¢ 5 ad 3\.,\5;;5!\ Alally ijé; qm Alaiadl dl_,j‘y\ E b <5 PrOblem formUIatlon

<*(branches) ¢ 5 troot >3)3 (initial state) 4 s¥) Alall Jici Cua

actions s el) ()
Ciagl)) Jgeasll Juadt) Judeds g Ja)
State Space

The state space forms a directed network or graph in
which the nodes are states and the links between nodes

are actions.
_State space is a the set of all states reachable from the
initial state by any sequence of actions. :
Search s a process of looking for a sequence of actions o Salutinn
that reach the goal. Solution is a sequence of actions leading from
the initial state to a goal state.
Path Tt
Path is a sequence of states connected by a sequence
of actions.

Jadl) Badaty (5 5AY Ala (e JEE e HY) 48K

Implementation: states vs. nodes
A state is a (representation of) a physical conguration

A node is a data structure constituting part of a search tree
Includes state, parent, children, depth, path cost g(x)

sAdlat) g Bakad) oy 3 dl L

e ye (dnte e ALy Al b aia g o Allad)

Al o Laoal Jsia 30 e 0585 5l G Clidane 43y A 1336a1)
AGa) 308l Ul 5 (o3 Jadll (AT ¢ Baal) (oY) 5381l Lial

action ge) 5aall

parent, action
depth =6
State || 5 |[[4 Node P
g=6
& 1 8
51;&13
7 3 2
Parents: A.B.F Depth(C): 2
Children: BEF,C.D.GH! Depth(E): |
lnurnall.?:\zss‘: g? P Depth{H): 2
Siblings:{(8,£.F1C,0HCH, P ePthAK O
Ancestor:C{A.B} E{A} I[A.F} a
v Edge G(n)‘ 8
(my Level 0
' G\/\J\N‘a Lovel1 state ¢ s Nod
RO \,;‘; 060 1
e AT N [Omo Raolban T
iy e o i
chitdNode 1) (3)(K) — e /L' v Joonfoool
et L o S
L i
; o
Subtree Leaf Nodes 1

ooo
Qoo
an

Pl

\\ da Wi L 5 a3l de il a3 s <+ (degree of node) suic 4a -
\;,D\ P i days 51 s ded C ol Aa s 53 g gd A 5
y ¢ c) \ Dol st A) JadS e ¥l 2m) s degree(T) syadd da s -
\
/ \ AN 3 e bi T s nill s ja . degree (T) = max{degree(x) | x is a node of T}
= ¢ o o
LEQ @ \E) (\I) Q) (internal node) alals ssie J8YI e saslgde 5 md Ll sdie 8 e -

B.C,D,E, H: sl B
sde ¢ (leaf node) &g s de b i) L gl Sdie S ad -
K,L F,G,M,I,]J 1 Je (external node) Z jla

s (1-7)
(sibling) #! — (child) 9 — (parent) o : Adall SEAR) sl Gm 2255 o (e —
13 (siblings) sl Lyl isie e Jgis . (grandchild) sés — (ancestor) calo —
32000 Y § B, F jusiadl G&allg o B, F il U B osaiall @ 2 . ads Y1 Legd oS
Ll H LT s s B
W X S ¢ oy 3 U0 X S 13 i 13 ¢y skl il L) X B o Jgli —
M sl Uil 5 H, D, A sl e 05 : Yia . y o
lada X ClS ¢ oy] L X S 1Y g 13 ¢y kel ada L X 538 e Jgki -
cBisd da K E F sdl oy oy
o (branch) o8 e 5 sl Ge Al IS 6 nd geaa (path) lee e
gAA D H M: k. 83,0 Bl caal 5 jaal Safe n deay s S5 500
T il &

& souall 23aalgsaie g gan5 el o iFull Binary Tree ddiied) 4l 5 ol

1k|_§_9buml||kejzk. ‘2‘,53:""""“][_9-"55(‘_-'_)"3~]\5 '||=Jﬂ 30

Al A s adi s (5-7)Jedd)

Sl iy i 2-6

Sl g A e aaadl g JAadY) e A Cn ealiall (e (Aaha) A e A g
sasadla) 5S¢ S=(an a ...,) geaSal dal e Didd L tOp eaSd dd
Ay peaiall 3gh A jeaisl J,gj;wM1€£h%1 aiall A jwﬁﬂzt#mﬁn
. (l<i<n)

o il Je o geae JA B, C,D,E jealiadl Wladi 13 4558 paasldl e o gl
e g (1-6) JSil) . oSl (e ddda audiins @ J Y1 eaidl E 58 S

39 0% g€) Cial jeaie AT 0 Ly 5. caiad 5 dslay) & jsd

gl 8 e S aliall ey atd T L0 1AL die B paie

Last-In-First -Out (LIFO)

Queue L asgda 6-6

St A

Gies e clly 5. @aaall 0 J jasd auds g JAY 8 O eand o 4
. First-In-First-Out (FIFO)

STATE SPACE GRAPHSVS. SEARCH TREES

State Space Graph Search Tree

A NODE in in the
seorch tree

identifies an entire

PATH in the stote

space graph.

Fragment of 8-Puzzle Problem Space

112(3
8 4
7/6|5
depth =0 ‘
1 3 112]3 112(3 112(3
edge 824 8|4 8|64 84
7/6|5 7/6|5 7 5 7/6|5
node
- @ O
13 13 1|2 112|3 112(3 112(3 2|3 112(3
824 8|24 8[43 8(4|5 8/6|4 8/6|4 1184 784
7/6|5 7/6|5 7/6|5 7|6 7|5 7|5 7/6|5 6|5

depth =2

depth =3 ‘

o

»,
o

States: locations of tiles

Initial State: any random arrangement
Successor function: move blank left, right, up, down
Goal test: Ordered arrangement

Path cost: 1 per move

27 © Daniel s. weld

°,
L33

-,
o

e

%

>

3
RS

Search strategies) el

Slgtine g a ghics AN 318N A L
Baall aaa L;:‘X‘ < Aeadiiaal) doai) jiuY)
Ay lpans e Sladi) i) jaad ulas dac da g

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions:

: . . Alald g ALals
completeness—does it always find a solution if one exists? . . —_—
P y BM\WaJP}d\A@d;.“éc‘)jﬁﬂLje}ﬂwb

time complexity—number of nodes generated/expanded ‘ I
Ao gall gl 32 gall 2321) 2ac 2aa3
space complexity—maximum number of nodes in memory (QSall)s S 5) pludail) s
3 SN A ALy HA% o gt (gA) Ml (e adae YT 20a)
optimality—does it always find a least-cost solution? b

A pal QG Qi) Jal) e a3)

Time anq space comglemtv are measured in terms of A i) priiud s I g o g st o
b—maximum branching factor of the search tree Al oz 5ol g 5) ey 2l b
d—depth of the least-cost solution (1) s yaaa¥) RS 53 Ja e 2l
m—maximum depth of the state space (may be 7) a2 5% o) SV (an (8 (Sa elaill (e) Geall im

o |

Types of search algorithms

Based on the search problems we can classify the search algorithms into uninformed
(Blind search) search and informed search (Heuristic search) algorithms.

Search Algorithm
(cbsaalailadll e Gnd) Cinsi yind v (il ing)fidlae iy Cinsi i
v v
Uniformed/Blind Informed Search

| _» | Breadth first search |::| Best First Search I
—;...l Uniform cost search | A*search |
M Depth first search

>| Depth limited search

»| Iterative deeping depth

first search
*| Bidirectional search
[] []

Uninformed search strategies B e o) sl s

Uninformed strategies use only the information available
in the problem definition

ACa) oy i b s Aaliall il slaal) (sloandlYigan sall s Condl Cilyndi jiasd a2iis
States, actions, goal test, path cost

Breadth-first SEANCH (BFS) s ottt 6, ol Jym s s e 55 il 51 o
. gl e Ala e Cangdl Alla ey £l £L)

Uniform-cost search (UCS) S 540 50 s s i) i) e 55

Depth-first search (DFS)

Depth-limited search(DLS)

Iterative deepening search (IDS)

Breadth-First Search (BFS)

1. Breadth-first search (BFS)

» Expand shallowest unexpanded node

* Nodes are stored in FIFO queue (new successors go at end)

Queue: [A) D@

* Frontier=(A)
. Exploreﬁ;()

#h a8 l aall (5 g3 Aian Clihina 4y (3'.>
! tI‘\ :'[; AF.\‘
Queue: [CD, E)

* Frontier=(C,D,E)
* Explored=(A,B)

Queue: [B, C) o

* Frontier=(B,C)
* Explored=(A)

Queue: [D, EF6)

* Frontier=(D,E,F,G)
« Explored=(A,B,C)

Ezaiall) Asdiall e J el 2y i

208 ¥ $tCangl Skl b s A Riladl Bkl 585 duly
B B, C eVl i i () Ledkif AdLia) y Vg i o)
@ & & (0 B a4y FIFO Jil o0 Y Blaadl 381 UL o gk

S sl Y9 Cingll a Ja B sl s

00 gl o) () gl ial g B el ey e
(4) PEE5 I G 353 e Y1 B eltd o 5D s €D,

MEIECRRY JCNRGY oIS JRU- TS PRI XA I EE e
(sigsl S E 5D Jé

WIS el Y TPiagdl A e C ssiadl b

sl el i G L] Al g Lt o

aad g g s g3 Bl i g aall diall (B WD EFG
D (b Yo Alalall giiall f5ai FIFO lise adiad gas

sl lla Y dd), 008 oo oS0 g Lt gy o gl 0 Y finglBaiall 4
gl a0 S LA il g B A Skt B30 el Sl

Breadth-first search: Properties

d—depth of the le
Mm—maxi
s
(&) 1 node
'd W bnodes
r N 5”2 nodes
0 — [] Ynﬁu
m . b”m nodes
Time? O(b9)

gl node Wlsas ceal nods JS 8L 31 48 aiul (Al (a3l (8 o8 anll Ayl 53 24T (4)
Cliall fpania 335 gall node 2ae

] b2 nodes

bad nodes d s siedl 8 nodes 2xe

»
B
e]
(&) 1 node
c) b nodes
4 N A2 nodes

Space? 0o(b%)
Queue 5_SIAIN 8 45334l nodes e

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? 1+ b+ 4+ + ...+ +b(b" —1) = O(b*1), ie., exp. in d

Space?? O(h""!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general St sy 29 s il

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Breadth First Search

— Level 0

— Level 1

—» Level 2

— Level 3

—» Level4

Breadth-First Search (BFS)

©
o/: e & -
‘ S o W

&y Al

{ABSCGDEFH)}

Breadth-First Search (BFS)

o ©) »
-~ - é o é_o 6o e
~e¢)0 | ""e—cL —e o o
&—0
o ﬁ o
/ /é [e] & ® - { -b“/ -b""o)
¢ 8o —0 é6—
- B =G 0 | ag 0O | o)o | |
© o ® O©0 : o o o —0
Ok a4 § 6 o
e L LN e ~a X ‘ S ————
o0 =i o - iE s ==
{ABSCGDEFH} o g B

O

...

N

T 3."'”"“3 = v@
‘x:{[)'
- —/ (@G

é@))

(-l

Jm

BFS Breadth First Search

Uniform Cost Search (UCS)

daliiial) ARSI, Guad) Al i)

2. Uniform-cost search (UCS)

* Expand least-cost unexpanded node ¥ cost '« node t

* Nodes are stored in Ordered queue (order by cost) First-In-First-Out (FIFO)
Queue ¢ nod J) JLEa Arer Bl 5al nod quit ALk il) 5401 G (8 A

(el Jis order by cost A4SH G yaa (e JiN a5 e (gl d8lial 5 L saie G g o 6855 p0 IS 8 805 AL A5 phal) 4
Ordered queue ;ﬁ)d\ dﬁ)ﬂ.ﬂ ‘sl};}” A=) <A Llee Lo g Aal<s &Y\ 3axl olaal 3‘5333

() (2)
1 15 1 15
3 3
(e) (©) © (& (c) (o)
10 (1] 5
G, G, (e)
C* is cost of optimal solution Optimal: Yes Time: O(beeiling(C*/2))
€ i1s minimum action cost Complete: ife> 0 Space: O(beeiling(C*/z))
1 15 Fsaiall Jpeapll a5 A L Adadi 500
G ® i gl i) g Ly s o 88 0 ¢ Y TSN 8 A S2EaD A
Jua¥le (325 30 26358 gl (o | sy I e e BLC,D s 3
10 1 1 | ..B‘JA}(;)EASJdéﬂ'lva_,b.l;jisja.\hj:_)ﬂua_;l_’xs.i
O o

Tl g i o 8 ¢ S il Y RGN b o e Ll o ity
) ' 1M a5y 0 g B 5 3y 0o ol e

1 15
3\© C by (3K JiW1) JSss CF D 2 Jii sl

¥ bl 2iall 98 e o Il ing il b s 3 ¢ el Jiny
Lgraadiy W a3 Cpa Y] Lgiala o8 jai

@
o

10

®
() SX Cuald Y £ 54
1 15 £l _'Y?.u.\g.“l‘sadtc.:hﬂl_»'_u
3
(&) ©) : el ean Cra i M o iy 1l Ll) 5 L 5y o
1 5 Eadiadl ooy (8) W AW (o g ae oW1 askl) SR ED
0 G Lt satall jaadh 508l a ¢ a1 53 S5 Ll 55 AU
(%) —
1 3% i 51 8 Ll iy Lyt S Y 0F gl 0 5l s
(&) © L T Lty JSYERAEN 8 DN T cisie Ut sl B0 [ED |
10 5 T 5l M m G Bl U85 B Laally] LS
|
® ® 9l Chogl el a1 gy |
1 e ,
®

Godll Badlig ¢ Baludl JUA e o jelly Can W daadl il (Gulaly o gt

B,C,D: JiLl Ll dilal o i Cangll sl A saiad) 32l Ay

0 Ll A8La) 5 Lgun 53 i) caagll Cond B o8 5 Y ol dilimal) 38al) a0

ginns 53 o 581 A Congl) Canad € 53801 oy siall (s Y AiLadll 3821 535 C,D,F

o sl ¢ Caagh Casl s D a5 Yool Bl 538l HLish ol DUFSE - Jiol il Al

G oo s Bladly JIVF Las Yl Adlaadt saall a0 FE R il il dilis) o \gtans sty
11 488 G Ll aiasl Yauads Yl Lgiil)

¢y yhall o (RN maal 5 (34

dalee J€ A il Qa5 e) s cilima (g y o Aelatial) 281K Casall 48y ylay Alaa Sl
JiM aaa o had Ay je & 5)al COlS LIS e 3l e Sy s
Jadl e Canny Aakaiial) AKIG Ganal) Laiy o J gV Geadl 53 dall e Cinyy Y5l m el Gl

BN EHE
T
1
] W .00 . At} ARISIL duand) el s Gailad
S
% CHERY ° "o € in o e e o S AGICH ol 13 ¢ AL A jha e 3 Al gl
L. “ "
N ok " " B! Jadl IS g gl o il pa g o TS A lnally il s 3 e) el
JieY! daliDepth " . " .
C'/(— bAC*/ * nodes -L;-‘L\‘thq ()‘:"ll 4'11‘5 g’d’ c* —= O(bA[C*fE])
i R O(bA[CH/e]) 1 3 8V agins
Al A Jal) e e LY et AukiaY)
* Process all the nodes with the cost least than the cheapest solution _ N o i
* Cost of optimal solution is C* and the cost of every action is € Sall (JS g il S S @ ol Cand 4yl 1315 26 Ll 220 ‘-—_" Ba¥
A ludia
C* is cost of optimal solution Optimal: Yes Time: O(beeiling(C/&))

€ is minimum action cost Complete: ife >0 Space: O(beeiling(C*/s))

Visited UCS Uniform Cost Search

Path
Cost
r/._-.\\
o 3)_/;\37";&, .
s z — - \
A]
g l,-“'"- 7 1-‘\._1),(
-~ 'Ycr& - {,_
(8) - ~{G)
N —— N

UCS Uniform Cost Search
UCS Uniform Cost Search

Uniform-cost search example

10
3
source 15
B >
4
4
C L
8

Destination

Output: 17

https://www.scaler.com/topics/uniform-cost-search/

Uniform-cost search example

Sibiu 99 Fagaras

101

Bucharest, now with g-cost 278,

is selected for expansion and the solution is returneg
ucharest

Uniform Cost Search

—» Lovel 0

exp. node nodes list CLOSED list
{S(0)}

{A(1) B(5) C(8)}

{D(4) B(5) C(8) E(8) G(10)}

{B(5) C(8) E(8) G(10)}

/%

{C(8) E(8) G°(9) G(10)} ®». @ @{
E6 GO 610wy L NUN \s
{G'(9) G(10) G™(13) } ® ® @ @

G {G(10)G”(13) }
Solution path found is S B G <-- this G has cost 9, not 10
Number of nodes expanded (including goal node) =7

MmO wog e

https://pg.its.edu.in/sites/default/files/Al1%20Unit%202.pdf

generalSearch(problem, priorityQueue)

£ of nodes tesled. 0, expanded. 0 ::T::a.&:st.:ﬂ.l;;ﬂ:_[:::::;:qm‘1 sl e\ generalSearch(problem, priorityQueue)
"SXpnd.node nodes st "Sxpnd. node] nades el JU 0 s L aowd <.
| —— expnd. node] nodes list
e e R)
S (B2,C4AS5)
B8 not gox [CAASC2+6)

genezralSearch(problem, pricrityQueus)
of nodes tested: 3, expanded: 3

expnd. node| nodes list
(S}

generalSearch{problem, priorityQueus
ol nodes tesled 4, epandad 4

of nodes tested 5, expanded 5

Texpnd.node nodes list
e e 1181 e
5 B2.C4AS) 5 [BZCAAS) 5
B {CAASGA) B [ICAASGH)
Cootgonl | {ASF 4+2.G:8) C [IASFEGH) i 3 -
i Fre (G421 GHED,
D14}

'I:Fs.c.s.- i .
} :
7

generalSearch(problem, priorityQueus}
of nodes tested” B, expanded: 5

_expnd. node| nodes list
{5}

generalSearch(preblem, priorityQueus)
of nodes tested 6, expanded 5

BZCAAS
1A5GH
A5, F6,G8]
[F-6,G:8,E9,D 14}
[(G7.GHEAD 14]
(GaESD 4]

i pxpond

>| 0| @| ol

|

(]

®®
pat: SCF 0 /w.jarrar.info/courses/Al/Jarrar.LectureNotes.Ch3.Uni
i nformedSearch.pdf

Depth-First Search (DFS)

Vol Gaalls diad
3. Depth-first search (DFS) o diall G20 3 LIFO e e st Cus ¢ €Y1 Ganll 3 855nll dasa 7y 2 lall o305

Vol as LAY Al i

» Expand deepest unexpanded node
* Nodes are stored in LI~FO stack(put successors at front)

Stack: [A) ’@

Depth-First Search (DFS)

Stack: [A] ’@ » Stack: [B.C) (4)

(=)
@

k:
Stack: [DEC) Stack: [HIEC), FaNRes

Depth-First Search (DFS)

Stack: [EC) Stack: [JKX]) Stack: [C)

Stack: [M,6)

Stack: [F.6] Stack: (LM6)

Goal is found!

3. Depth-first search(DFS)

< Complete? No (fails in infinite-depth spaces, spaces with loops)

gl et A il (aad
o 7‘
e O(bm} J.u..-'_zyswy;@ﬁuﬁdb@s&hwwdﬂ|;mU\Sdbwﬁ Al el
Gaalt Y -Vt
<+ Space? O(b.m) <t S
L}Gﬂd(ﬁﬂ_ﬂb uana.nH _)S.uwja...un a_g_)!(_lnlsuj:—m}ﬂbwum “g.mJ.“ ma.;]\
& Optlmalj No . O(b/\m) \.1.-.:.. S agadll Sl ¢ 5l a_,)ﬂ L;nhcy! e

ihmy&}ajla%ﬁiai)w]uaaﬂhdhﬂuﬁuLauﬁ

M.J;..J?Js_\d;&;!cJluej_jd.aﬁdﬂuuwmgé_}m&d;iunmowm) 2SIl
aﬁlﬂﬂ@&hﬂbam&ﬁlou PhogEil

Agllie imes Y AT

. Depth-First Search (DFS)

GaeY) Baal)) Jesias Ganll Al
bAm nodes

Number of Nodes on the entire tree= 1+b3+b%+ . +b*14bi4b™ e +bm= O(b™)

Time? O(b™)

inode 2= Julbstree & sl g 8 o5

1388 5 b B (5 sisall 5 b (SN (5 gisall (A5 1 S5V (s siall 3
1+b+b+...+b=m*b

m*b nodes 2

Depth First Search

Depth-First Search (DFS)

B (D)

/

%
©

Depth-First Search (DFS)

D
/.. /0 [g).
R e 38 e B
'’ o o ol | L2 &
/ el Vo, a
) | S—) A
(o e @ | e e |
\@40 {(ABSCDEHGF)
Yl
T ‘
.

Tree after DFS run and edges in G
I

™
1

N\

s 3
(4\'/ NN)
)
\ 4 iy |)
— ‘/)\ ~ 1Y '\1 "’<\§;/
/5'\{[_ ‘\\v y, - 2" r_‘_:ll (_‘ \\;
\‘—/’ T - — A I/"‘

Visited
Path
Cost

4. Depth-limit search (DLS)

= Expand deepest unexpanded node until reach limit L
= Equivalent to depth-first search with depth limit L

+ EX: Let L=1

e e e

Goal is not found ! 5 Y ol Banlly Canl) (e Aare 43 58 Gandly 5 ganall Canll
Las (e (Bae (i el il CaiSiuin dga)) &) O x4

O masall e e Llall dfiee < jlue () I3 e Ulad Lgmiay

gl) gy

o s Smam
6 9 54 10 SRt

4. Depth-limit search(DLS)

< Complete? if d=1) d goal depth
PPN No 0) L: depth Limit value

% Time? o(bh
% Space? O(b.l)
< Optimal? No
DFS with Limit 3
Visited
Path
Cost

° 0—> °
& (2
(® Ry Oy O
(&
® 6 - O @

Breadth-First Search (BEFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

- ’ B
&~ I o
A & S discovered = [B, , D] (0) w"f’“
/ \) / D / e \\ z discovered = [C, D]
C
/,/
- - / i 5//
i) — F
\\ . R \-\ : i R (!) ;,r’f -\.\
4 / discovered = [E, j discovered = [D] ~—~ @ \

Depth-First Search (DFS)

> g
O\

plored = [A, B]
discovered = [C, D]

G
G =[A B CD,E

xplored = [A, B, £, D] .

o3\ ©—g\

e /

—~@ | -9

explored = [A, B, C, D, E, F, G] @ explored = [A, B, C, D, E, F, G, H]

discovered = [H] discovered =[]

Summary of Uninformed Tree
Search Strategies

Criterion Breadth- Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes MNo No Yes
Time oY) Oo@®lcey owm)y O O(b?)
Space O™ o®Ic Ty oBm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

Types of search algorithms

Based on the search problems we can classify the search algorithms into uninformed
(Blind search) search and informed search (Heuristic search) algorithms.

Search Algorithm

(cbsaalailadll e Gnd) Cinsi yind v (il ing)fidlae iy Cinsi i
v v
Uniformed/Blind Informed Search
| _» | Breadth first search |::| Best First Search I
| A*search |

—;...l Uniform cost search

2 Depth first search

- Depth limited search

\i

Herative deeping depth
first search

> Bidirectional search

Informed Search Heuristic Search

The informed search algorithm is more useful for large search space.

Informed search algorithm uses the idea of heuristic, so it is also called Heuristic search.

h(n)= estimated cost from node n to the goal. g Jin saall o 2) ek

In the informed search we will discuss two main algorithms which are given below:

Best First Search Algorithm(Greedy search)

. Y ol Juad¥l Ganll
* 3 ;

A SearCh Algorlthm Jsag™) 50 “_.,'_'M 3aall c__u.u}'.':.i ?5 L_51 f(n) (‘:‘;‘:‘:‘]1 (‘___ﬂ: ‘_,'J.: elu c._;ujiﬂ 323l _)L_ﬁi'l fj ™

s gill 0] aamill I3 B8]l AasT ol @

priority queue a2l e

A* Search ;Greedy Best-First Search (= Saaiiu e

Heuristic Function

» h(n) = estimated cost of the cheapest path : 43 2 \vanll * AT
f'r{or)n node n to a goal node o gl Bl) Bl G s gt Y B el A
* h(goal node) =0
 Contains additional knowledge of the
problem

7 38edi] Al 328 e (J g 5l Adaia 1T 481K (n}

el gl B3all) Baiall (pa FEISH (et g4 FI(n)

1. Greedy search ” 5 5 4
Aaall el LA JS G cpe Ailedl) AN) 81 LA Hlas

% Evaluation function f(n) = h(n)

< h(n) is the heuristic function

“ Greedy best-first search expands the node that
appears to be closest to goal

choose node with minimum f(n)

In the best first search algorithm:

ALY il A1 Al gy oA AR 508 5y g Cangll saie) o 81 Batad) s gy o s Y Jiad) Gl By 53 B

. o B
we expand the node which is closest to the goal node and
the closest cost is estimated by heuristic function

A gl cud UL daild
The greedy best first algorithm is implemented by the priority queue.

H (n)

Yyrnnaea®oe

node

<R0ARKI~nN0

VVY.
1
D

...
\
=

P
%

7 \

&)

)
B

QA

=

Best First Search

h=6

h=7

“ h(n) = straight line distance (SLD) from node to goal

Straight—line distance
1o Bucharest
Arad 366
=) Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgin ¥
Hirsova 151
Tasi 226
Lugoj 244
Mchadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374
Total coast=140+99+211= 450 . .
3 : ; Straight-line distance
Is this tr?e optimum solution ? buul:‘
.ﬁuﬂ‘ T Arad 366
— =) Bucharest 0
— S— Craiova 160
Dobreta 242
Eforie 161
253 3 ki F*w 178
Giurgiu ”
= —_— Hirsova 151
@« Lasi 226
' Lugej 244

Greedy search example

P Arad >

366

Greedy search example |

253

Arad

320 374

Greedy search example

Arad

Sibiu

329

b C Oradea) tEimnicu Vilcea)
366 176 380 193

374

l Greedy search example

Arad

Sibiu

329

e 380 . 193

366

C Sibiu DpC Eucharest >

253 0

374

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite
path)

Optimal? No

Time Complexity O(b™)

Space Complexity O(b™)

Best-First Search algorithm

27 (D) (F)
o) o)))«
7,‘)?. i)' I~ S /")~
w0 B,/ Y w0 __ < 3//
A— 8) Il sun A)———(Y
start (A) ¢)
N = \.. \\ /
PN H) N P
X pLy N \
on N A10 Ol 10
- ~—{EY ~ ——(R)
2 19 1 19
Best-First Search algorithm o6

5) So now the goal node G has been reached and the path we will follow is A-
>C->F->G.

2. A* search

“» Avoid expanding paths that are already expensive
+» Evaluation function f(n) = g(n)+h(n)

* g(n) = cost so far to reach n
* h(n) = expected cost from n to goal

(actual)
(estimated)

f(n) = g(n) + hin)

-
.
Edleted cost —— Costto reach
of the cheapest Cost to reach from node nio
solution. node n from ineda

Crod
st

f(n) = g(n)+h(n) .
: : AF Qg dly

A} ZAISY1 3 a5 (53U g ¢ ALl s 2 g pal) JSLEY o o

: S F(n) = g(n) + hin): Sl glall 48 yhil oda a2
n 52l) Afadi ke e J pea sl 48T A8KH 1 o(n)

aagll Baaall) p Bakad) (e 48N (s 54 iH(n)

n saialy))5 5e Cangll B 1) Aol sk (pe el i) LIS K o F() s

(3 e JUAE J pifa (pedd ardiind A¥ G,k

Cagll (e n daiall Liad) Al e ¥ (n) Lesd Cua hi¥(n) (ssbed) sasal h(n)
adl) e G (51 JaT e h(G) = 0 08 OF sy S s h(n)>= 0 0s%e O e

A" search example

366=0+366

A~ search example

T

393=140+253

Arad

447=118+329

449=75+374

A" search example |

Arad
) 447=118+329 449=75+374
 Fagaras » Oradea)

6G46=280+366 415=230+176 B671=291+380 413=220+193

A search example |

Arad

447=118+329 449=75+374

D(Fagaras » € Oradea)

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

A search example

Arad
Sibiu qﬁiﬂalaap
' 447=118+329

646=280+366 B71=291+380
591=338+253 450=450+0 526=366+160 417=317+100 5&R3=300+253

449=T5+374

l A search example

Arad
Sibi imisoar
' 447=118+329

646=280+366 B71=291+380
Pitesti >
R91=338+253 450=450+0 526=366+160 553=300+253

PEnared Cranva> @ne i

418=418+0 ©615=455+160 607=414+192

Total coast =418
Is this the optimum solution ? yes

449=75+374

2. A* search

< Complete? yes

+Time? oy Exponential

< Space? _D{bdﬁeeps all nodes in memory (iook ot this)

< Optimal? yes

A* SEARCH ALGORITHM

State h(n) $ l/‘ l‘o

B
y \5 S 5 A (j
1 A\] 5 D A 8 2/ \l v)
/ C 4 4 \ B * : 2 & \v
\9 C = / 3 (j
10 - - D 3 D
G 0 \ "’\

Example of A* Algorithm in Action

2+104=124

- D

E D
(D)4+89=129

8+6.9=149 6

7'+4=11%>‘1 @

Dead End

A* (Star) Search Algorithm

11.5

f(n) =g(n) + h(n)

(s

+ = 4492 =
! 1121l st.z
Ca [
)
13./1/ \Q.z
122/ 'n.z @ @™ @
/&BJ) 123|172 o [\ 4454101 =
34444434 > |3+4+5+7.1= ® @ : 172 ‘. 19.1
Yo e ™ 3+4+4+}.4/ ‘3+4+5+7A1= @ @ l @
e @ M 14/‘19.1 | 442471

)
1 l/ 32 @
e oy

€0 .2
@ @
23 |12 | 5 128 [172 T
""/“/ 1% [12:1 143" 191 131
©® 44245458 ® 44244435 = © ®
-168 < \ 135 168 s
(B) (&) G?

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

8
b e) h=1
1 h
— A 3 .-'/ 2 —

(S (a) (d} (G)

(c) i_b_':i

h=7 h=6

Greedy orders by goal proximity, or forward cost h(n)

g=2
h=6
g=3,
h=7

3.15 Consider a state space where the start state is
successors: numbers 2k and 2k + 1.

a. Draw the portion of the state space for states 1 to

b. Suppose the goal state is 11. List the order in wh
first search, depth-limited search with limit 3, and

a. See Figure S3.1.
b. Breadth-first: 12345678910 11
Depth-limited: 12489510 11

number 1 and each state & has two

15.

ich nodes will be visited for breadth-
iterative deepening search.

3.21 Prove each of the following statements, or give a counterexample:
a. Breadth-first search is a special case of uniform-cost search.

b. Depth-first search is a special case of best-first tree search.

c. Uniform-cost search is a special case of A* search.

d. Breadth-first search is complete even if zero step costs are allowed.

321
a. When all step costs are equal, g(n) o depth(n), so uniform-cost search reproduces
breadth-first search.

b. Breadth-first search is best-first search with f(n) = depth(n); depth-first search is
best-first search with f(n) = —depth(n); uniform-cost search is best-first search with
f(n) =g(n).

¢. Uniform-cost search is A* search with h(n) = 0.

3.25 The heuristic path algorithm (Pohl, 1977) is a best-first search in which the evalu-
ation function is f(n) = (2 — w)g(n) + wh(n). For what values of w is this complete?
For what values is it optimal, assuming that i is admissible? What kind of search does this
perform forw =0, w = 1, and w = 27

3.25 Itis complete whenever 0 < w < 2. w = 0 gives f(n) = 2¢(n). This behaves exactly
like uniform-cost search—the factor of two makes no difference in the ordering of the nodes.
w = 1 gives A" search. w = 2 gives f(n) = 2h(n), i.e., greedy best-first search. We also
have

f(n) = 2 ~w)lg(n) + 5=—h(n)]

which behaves exactly like A* search with a heuristic 5%-h(n). For w < 1, this is always
less than A(n) and hence admissible, provided h(n) is itself admissible.

Example: monkey and banana

o Problem:
» There is a monkey at the door into a room.
+ In the middle of the room a banana is hanging
from the ceiling.

« The monkey is hungry and wants to get the
banana, but he cannot stretch high enough
from the floor.

+ At the window of the room there is a box the
monkey may use.

» The monkey can perform the following actions:
walk on the floor, climb the box, push the box
around and grasp the banana if standing on
the box directly under the banana.

« Can the monkey get the banana? l

+ The initial state:
(1) Monkey is at door.
(2) Monkey is on floor.
(3) Box is at window,
(4) Monkey does not have banana.

state(atdoor, onfloor, atwindow, hasnot)

state
T

Thelf the ga

(gt

oFour types of moves:
grasp banana,
climb box,
push box,
walk around.

oA three-place relation:
move(Statel, Move, State2)

Statel ~ Statez.

move(state(middle, onbox, middle, hasnot),
grasp, state(middle, onbox, middle, has)).

move(state(P1, onfloor, B, H),
walk(P1, P2), state(P2, onfloor, B, H)).

move(state(P, onfloor, P, H),
climb, state(P, onbox, P, H)).

move(state(P1, onfloor, P1, H),
push(P1, P2), state(P2, onfloor, P2, H)).

o Question: can the monkey in some initial state State get the banana?
canget(State)

canget(state(_, _, _, has)).
canget(Statel) :- move(Statel, Move, State2), canget(State2).

Statel State?

canget canget has

'rﬁwe(staté(mlddlé. ont;ox, middle hasn;m, grasp, state(middle, onbox, middle, has)).
move! state(P, onfloor, P, H),climb,state(P, onbox, P, H)).

move(state{ P1, onfloor, P1, H),push(P1, P2), state(P2, onfloor, P2, H)).

move{ state{ P1, onfloor, B, H),walk({ P1, P2), state(P2, onfloor, B, H)).

canget(state(, , , has)).

canget{ Stote1l) :- move(Statel, Move, State2), canget(State2).

canget(state(atdaor, onfloor, atwindow, Rasnat)).

canget| state{ atdoor, onfloor, atwindew, hasnot)).

True
1 Solution

What is the definition of a reflex agent according to the
manual?

An agent that learns from experience to improve its
behavior.

An agent that takes actions based on an internal
model of the world state.

An agent whose action depends only on the current
percept.

An agent that selects actions based on explicitly
represented goals.

An agent whose action depends only on the current
percept.

An agent that selects actions based on explicitlv

(B,

BFS Breadth First Search

e SAG
{ Path 4
Qe ° Cost ~~
. ‘ {)
(o) (s
>

SR v

DFS with Limit 3
a
’ ° JO,
-~)
(S>
; z/\ 1-> A
) A
> B /Cc\‘
9 @ /é

UCS Uniform Cost Search
UCS Uniform Cost Search

Lo

9@) »gclz A ;

UCS Uniform Cost Search

B, O-

A
(& (o)

/

Py

112

1
[6] O

Goal state

9]

4

[XI=gm) [7] (8]

path cost of node n

Uniform Cost Search (UCS)

5 2
5] 2]

113

Uniform Cost Search (UCS)

5]

9]

114

Uniform Cost Search (UCS)

5]

115

Uniform Cost Search (UCS)

116

Uniform Cost Search (UCS)

Goal state
path cost

g(m)=[

9]

91 O

4 5
[7] 8]

117

Uniform Cost Search (UCS)

118

