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1 Numbers

gl. THE INTEGERS

The most common numbers are those used for counting, namely the 
numbers

1, 2, 3, 4, ,

which are called the positive integers. Even for counting, we need at least 
one other number, namely,

0 (zero).

For instance, we may wish to count the number of right answers you may 
get on a test for this course, out of a possible 100. If you get 100, then all 
your answers were correct. If you get 0, then no answer was correct.

The positive integers and zero can be represented geometrically on a line, 
in a manner similar to a ruler or a measuring stick:

0 1 2 3 4 ") Fig. 1-1

For this we first have to select a unit of distance, say the inch, and then on 
the line we mark off the inches to the right as in the picture.

For convenience, it is useful to have a name for the positive integers 
together with zero, and we shall call these the natural numbers. Thus 0 
is a natural number, so is 2, and so is 124,521. The natural numbers can be 
used to measure distances, as with the ruler.

By definition, the point represented by 0 is called the origin.
The natural numbers can also be used to measure other things. For 

example, a thermometer is like a ruler which measures temperature. However,
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6 NUMBERS [1 , §1]

the thermometer shows us that we encounter other types of numbers besides 
the natural numbers, because there may be temperatures which may go below
0. Thus we encounter naturally what we shall call negative integers which 
we call minus 1, minus 2, minus 3, . . . , and which we write as

-1 ,  -2 ,  -3 ,  -4 ,  . . .  .

We represent the negative integers on a line as being on the other side of 0 
from the positive integers, like this:

-4 -3 - 2 - 1 0  l 2 Fig. 1-2

The positive integers, negative integers, and zero all together are called 
the integers. Thus —9, 0, 10, —5 are all integers.

If we view the line as a thermometer, on which a unit of temperature has 
been selected, say the degree Fahrenheit, then each integer represents a certain 
temperature. The negative integers represent temperatures below zero.

Our discussion is already typical of many discussions which will occur in 
this course, concerning mathematical objects and their applicability to 
physical situations. In the present instance, we have the integers as mathe­
matical objects, which are essentially abstract quantities. We also have 
different applications for them, for instance measuring distance or tempera­
tures. These are of course not the only applications. Namely, we can use the 
integers to measure time. We take the origin 0 to represent the year of the 
birth of Christ. Then the positive integers represent years after the birth of 
Christ (called a d  years), while the negative integers can be used to represent 
b c  years. With this convention, we can say that the year —500 is the year 
500 b c .

Adding a positive number, say 7, to another number, means that we 
must move 7 units to the right of the other number. For instance,

5 +  7 = 12.
Seven units to the right of 5 yields 12. On the thermometer, we would of 
course be moving upward instead of right. For instance, if the temperature 
at a given time is 5° and if it goes up by 7°, then the new temperature is 12°.

Observe the very simple rule for addition with 0, namely

Nl.

for any integer a.
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What about adding negative numbers? Look at the thermometer again. 
Suppose the temperature at a given time is 10°, and the temperature drops 
by 15°. The new temperature is then —5°, and we can write

10 -  15 = -5 .
Thus —5 is the result of subtracting 15 from 10, or of adding —15 to 10.

In terms of points on a line, adding a negative number, say —3, to another 
number means that we must move 3 units to the left of this other number. 
For example,

5 +  ( -3 )  = 2

because starting with 5 and moving 3 units to the left yields 2. Similarly,
7 +  (_3 ) = 4, and 3 +  ( -5 )  = -2 .

Note that we have
3 +  ( -3 )  = 0  or 5 +  ( -5 )  = 0.

We can also write these equations in the form

( -3 )  + 3  = 0 or ( -5 )  + 5 = 0 .

For instance, if we start 3 units to the left of 0 and move 3 units to the right, 
we get 0. Thus, in general, we have the formulas (by assumption):

N2. a +  ( —a) = 0 and also —a +  a = 0.

In the representation of integers on the line, this means that a and —a lie 
on opposite sides of 0 on that line, as shown on the next picture:

Fig. 1-3

Thus according to this representation we can now write 

3 = - ( - 3 )  or 5 = - ( - 5 ) .  

In these special cases, the pictures are:
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Remark. We use the name

minus a for —a

rather than the words “ negative a”  which have found some currency recently.
I find the words “ negative a”  confusing, because they suggest that —a is a 
negative number. This is not true unless a itself is positive. For instance,

3 = - ( - 3 )
is a positive number, but 3 is equal to —a, where a = — 3, and a is a negative 
number.

Because of the property
a +  ( -a )  = 0,

one also calls —a the additive inverse of a.
The sum and product of integers are also integers, and the next sections 

are devoted to a description of the rules governing addition and multiplication.

§2. RULES FOR ADDITION

Integers follow very simple rules for addition. These are: 
Commutativity. I f  a, b are integers, then

a +  b — 6 +  a.

For instance, we have

3 +  5 = 5 +  3 = 8, 
or in an example with negative numbers, we have

_2  +  5 = 3 =  5 +  ( -2 ) .  
Associativity. If a, b, c are integers, then

(a +  b) +  c = a +  (b +  c).
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In view of this, it is unnecessary to use parentheses in such a simple context, 
and we write simply

For instance,

We write simply

cz +  6 +  c.

(3 +  5) +  9 = 8 +  9 = 17,
3 +  (5 +  9) = 3 +  14 = 17.

3 +  5 +  9 = 17.

Associativity also holds with negative numbers. For example,

Also,

( —2 +  5) +  4 = 3 +  4 = 7,
- 2  +  (5 +  4) = - 2  +  9 = 7.

(2 +  ( -5 ) )  +  ( -3 )  = - 3  +  ( -3 )  = -6 ,
2 +  ( - 5  +  ( -3 ) )  = 2 +  ( -8 )  = -6 .

The rules of addition mentioned above will not be proved, but we shall prove 
other rules from them.

To begin with, note that:

N3. If a +  b = 0, then b — —a and a = —b.

To prove this, add —a to both sides of the equation a +  b = 0. We get

—  cz +  cz +  6 = — a +  0 = —c l.

Since —a +  a +  6 = 0 +  6 = 6, we find

b = —a

as desired. Similarly, we find a = — 6. We could also conclude that

— b = —( —a) = a.

As a matter of convention, we shall write

a — b

instead of
a +  ( — 6 ).
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Thus a sum involving three terms may be written in many ways, as follows:

(a -  b) +  c = (a +  ( -6 ) )  +  c 
= a +  ( —6 +  c)
= a +  (c — b)
= (a +  c) — b

and we can also write this sum as

a — b +  c = a +  c — b,

omitting the parentheses. Generally, in taking the sum of integers, we can 
take the sum in any order by applying associativity and commutativity 
repeatedly.

As a special case of N3, for any integer a we have

by associativity 
by commutativity 
by associativity,

N4. a = —( —a).

This is true because

a +  ( -a )  = 0,

and we can apply N3 with b = —a. Remark that this formula is true 
whether a is positive, negative, or 0. If a is positive, then —a is negative. 
If a is negative, then —a is positive. In the geometric representation of 
numbers on the line, a and —a occur symmetrically on the line on opposite 
sides of 0. Of course, we can pile up minus signs and get other relationships, 
like

- 3  = - ( - ( - 3 ) ) ,
or

3 = - ( - 3 )  = - ( - ( - ( - 3 ) ) ) .

Thus when we pile up the minus signs in front of a, we obtain a or —a 
alternatively. For the general formula with the appropriate notation, cf. 
Exercises 5 and 6 of §4.

From our rules of operation we can now prove:

For any integers a, b we have

— (a +  b) = — a +  ( —6)
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or, in other words,

N5. — (a +  b) = —a — b.

Proof. Remember that if x , y  are integers, then x = — y  and y  = — x 
mean that x +  y  = 0. Thus to prove our assertion, we must show that

(a -|- b) +  ( —a — 6) = 0 .

But this comes out immediately, namely,

(a +  b) +  ( —a — b) = a +  b — a — b 
= a — a +  b — b 
=  0 +  0 
=  0.

This proves our formula.

Example. We have

— (3 +  5) = - 3  -  5 = -8 ,
— ( — 4 +  5) = - ( - 4 )  -  5 = 4 -  5 = -1 ,

— (3 — 7) = —3 — ( -7 )  = - 3  +  7 = 4 .

You should be very careful when you take the negative of a sum which 
involves itself in negative numbers, taking into account that

— ( —a) = a.

The following rule concerning positive integers is so natural that you 
probably would not even think it worth while to take special notice of it. 
We still state it explicitly.

If  a, b are positive integers, then a +  b is also a positive integer.

For instance, 17 and 45 are positive integers, and their sum, 62, is also a 
positive integer.

We assume this rule concerning positivity. We shall see later that it also 
applies to positive real numbers. From it we can prove:

If  a, b are negative integers, then a +  b is negative.

by associativity 
by commutativity
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Proof. We can write a — —n and b = — m, where m, n are positive. 
Therefore

a +  b = —n — m = — (ra +  m), 

which shows that a +  b is negative, because n +  m is positive.

Example. If we have the relationship between three numbers

a +  b = c,

then we can derive other relationships between them. For instance, add —b 
to both sides of this equation. We get

a +  b — b = c — b,

whence a +  0 = c — b, or in other words,

a = c — b.

Similarly, we conclude that

b = c — a.

For instance, if
x +  3 = 5,

then
jc = 5 — 3 = 2 .

If
4 — a = 3, 

then adding a to both sides yields

4 = 3 +  a, 

and subtracting 3 from both sides yields

1 =  a.



If
- 2  -  y  = 5,

then
— l = y  or y  = — 7.
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EXERCISES

Justify each step, using commutativity and associativity in proving the 
following identities.

1. (a +  b) +  (c +  d) = (a +  d) +  (b +  c)

2. (a +  b) +  (c +  d) = (a +  c) +  (b +  d)

3. (a — b) +  (c — d) = (a +  c) +  ( — b — d)

4. (a — 6) +  (c — d) = (a +  c) — (6 +  eO
5. (a — 6) +  (c — eO = (a — d) +  (c — b)

6. (cl — b) -|- (c — d) = — (6 -|- d) -|- (cl -|- c)
7. (a — b) +  (c — d) = —(b +  d) — ( — a — c)

8. ((* +  y) +  z) +  w = (x +  z) +  (y +  w)

9. (x — y) -  (z — w) = (z +  w) — y  — z

10. (x — y) — (z — w) = (x — z) +  (w — y)

11. Show that — (a +  b +  c) = —a +  ( — 6) +  ( —c).
12. Show that — (a — b — c) = —a +  b +  c.

13. Show that — (a — b) = b — a.

Solve for x in the following equations.
14. - 2  +  x = 4 15. 2 — x = 5

16. z — 3 = 7 17. —x +  4 = —1

18. 4 -  x = 8 19. —5 — x = —2
20. —7 +  x = -1 0  21. - 3  +  x = 4
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22. Prove the cancellation law for addition:

If a +  6 = a +  c, then b = c.

23. Prove: If a +  b = a, then 6 = 0 .

§3. RULES FOR MULTIPLICATION

We can multiply integers, and the product of two integers is again an 
integer. We shall list the rules which apply to multiplication and to its 
relations with addition.

We again have the rules of commutativity  and associativity:

ab = ba and (ab)c = a(6c).

We emphasize that these apply whether a, 6, c are negative, positive, or zero. 
Multiplication is also denoted by a dot. For instance

3 • 7 = 21,
and

(3 • 7) • 4 = 21 • 4 = 84,
3 • (7 - 4) = 3 • 28 = 84.

For any integer a, the rules of multiplication by 1 and 0 are:

N6. la = a and 0 a = 0.

Example. We have

(2a) (36) = 2 (a (36)) 
= 2 (3a) 6 
= (2 . 3)a6 
= 6a6.
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In this example we have done something which is frequently useful, namely 
we have moved to one side all the explicit numbers like 2, 3 and put on the 
other side those numbers denoted by a letter like a or b. Using commutativity 
and associativity, we can prove similarly

(5x)(7y) = 35 xy

or, with more factors,
(2a)(36)(5x) = SOabx.

We suggest that you carry out the proof of this equality completely, using 
associativity and commutativity for multiplication.

Finally, we have the rule of distributivity, namely

a{b +  c) = ab +  ac

and also on the other side,

(6 +  c)a = ba +  ca.

These rules will not be proved, but will be used constantly. We shall, however, 
make some comments on them, and prove other rules from them.

First observe that if we just assume distributivity on one side, and 
commutativity, then we can prove distributivity on the other side. Namely, 
assuming distributivity on the left, we have

(6 +  c)a = a(b +  c) = ab +  ac = ba +  ca,

which is the proof of distributivity on the right.

Observe also that our rule Oa = 0 can be proved from the other rules 
concerning multiplication and the properties of addition. We carry out the 
proof as an example. We have

• Oa -I- a = Oa -1- la = (0 l)a = la = a.
Thus

Oa +  a = a.

Adding —a to both sides, we obtain

Oa +  a — a = a — a = 0.
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The left-hand side is simply

0a a — cl = Oil -|- 0 = Oa,

so that we obtain Oa = 0, as desired.
We can also prove

N7. ( — l)a = —a.

Proof. We have

( —l)a +  a = ( — l)a +  la = ( — 1 +  l)a = Oa = 0.

By definition, ( — l)a +  a = 0 means that ( — l)a = —a, as was to be shown.

We have

N8. — (ab) = ( —a)b.

Proof. We must show that ( — a)b is the negative of ab. This amounts to 
showing that

ab +  ( —a)b = 0.

But we have by distributivity

ab +  ( —a)b = (a +  ( — a))b = 06 = 0, 

thus proving what we wanted.

Similarly, we leave to the reader the proof that

N9.

Example. We have

— (a6) = a( —6).

Also,

Also,

— (3a) = ( —3)a = 3 (-a ) .

4 (a — 56) = 4a — 206.

- 3  (5a -  76) = -15a +  216.
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In each of the above cases, you should indicate specifically each one of the 
rules we have used to derive the desired equality. Again, we emphasize that 
you should be especially careful when working with negative numbers and 
repeated minus signs. This is one of the most frequent sources of error when 
we work with multiplication and addition.

Example. We have

(-2 a ) (36) (4c) = ( -2 )  - 3 • 4a6c 
= — 24a6c.

Similarly,

( — 4*) (530 ( — 3c) = ( —4)5(—3)xyc 
= 60 xyc.

Note that the product of two minus signs gives a plus sign.

Example. We have

( — 1) ( — 1) = I*

To see this, all we have to do is apply our rule

— (a6) = ( —a)6 = a( — 6).

We find
( - l ) ( - l )  = - ( l ( - D )  = - ( - l )  = l.

Example. More generally, for any integers a, 6 we have

N10. ( —a) ( —6) = a6.

We leave the proof as an exercise. From this we see that a product of two 
negative numbers is positive, because if a, 6 are positive and —a, —6 are 
therefore negative, then ( — a) ( — 6) is the positive number a6. For instance,
— 3 and —5 are negative, but

( —3 )(—5) = — (3(—5)) = — ( — (3 • 5)) = 15.

Example. A product of a negative number and a positive number is 
negative. For instance, —4 is negative, 7 is positive, and

( — 4) • 7 = - ( 4 - 7 )  = -28 ,

so that (—4) • 7 is negative.
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When we multiply a number with itself several times, it is convenient to 
use a notation to abbreviate this operation. Thus we write

aa = a2, 
aaa = a3, 

aaaa = a4,

and in general if n is a positive integer,
an = aa • • • a (the product is taken n times).

We say that an is the n-th power of a. Thus a2 is the second power of a, 
and a5 is the fifth power of a.

If m, n are positive integers, then

Nil. am+n = aman.

This simply states that if we take the product of a with itself m +  n times, 
then this amounts to taking the product of a with itself m times and 
multiplying this with the product of a with itself n times.

Example
a2 a3 = (aa) (aaa) = a2+s = aaaaa = a5.

Example
(Ax)2 = 4x • 4x = 4 • 4xx = 16x2.

Example
(7x)(2x)(5x) = 1 2 -  5xxx = 70s3.

We have another rule for powers, namely

N12. (am)n = amn.

This means that if we take the product of a with itself m times, and then 
take the product of am with itself n times, then we obtain the product of a 
with itself mn times.

Example. We have
(a 3) 4 =  a 12.
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Example. We have

(ab)n = anbn

because

(ab)n = abab -a ft  (product of ab with itself n times)
= aa • • • abb • • • b

Example. We have

(2a3)5 = 25(a3)5 = 32a15.

Example. The population of a city is 300 thousand in 1930, and doubles 
every 20 years. What will be the population after 60 years?

This is a case of applying powers. After 20 years, the population is
2 • 300 thousand. After 40 years, the population is 22 • 300 thousand. After 
60 years, the population is 23 • 300 thousand, which is a correct answer. 
Of course, we can also say that the population will be 2 million 400 thousand.

The following three formulas are used constantly. They are so important 
that they should be thoroughly memorized by reading them out loud and 
repeating them like a poemy to get an aural memory of them.

(a +  ft)2 = a2 +  2ab +  ft2, (a — ft)2 = a2 — 2ab +  ft2,

(a +  6) (a — b) = a2 — ft2.

Proofs. The proofs are carried out by applying repeatedly the rules for 
multiplication. We have:

(a -f" b)2 = (a +  6)(a +  b) = a(a —|— 6) —J— 6(a -1- b)
= aa -|- ab -I- ba -I- bb 
= a2 +  ab +  ab +  b2 
= a2 +  2ab +  ft2,
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which proves the first formula.

(a — b)2 = (a — b) (a — b) = a (a — b) — b(a — b)
= aa — ab — ba +  bb 
= a2 — ab — ab +  b2 
= a2 -  2ab +  ft2,

which proves the second formula.

(a +  b)(a — b) = a(a — 6) +  6(a — b)

which proves the third formula.

Example. We have

(2 +  3x)2 = 22 +  2 • 2 • Sx +  (3x)2 
= 4 +  12x +  9x2.

Example. We have

(3 -  4x)2 = 32 -  2 • 3 • 4x +  (4x)2 
= 9 — 24* +  16x2.

Example. We have

( -2 a  +  5b)2 = 4a2 +  2(-2a)(56) +  2562 
= 4a2 -  20a6 +  2562.

Example. We have

(4a -  6) (4a +  6) = (4a)2 -  36 
= 16a2 -  36.

We have discussed so far examples of products of two factors. Of course, 
we can take products of more factors using associativity.

Example. Expand the expression

(2x +  l)(x  -  2)(x +  5) 

as a sum of powers of x multiplied by integers.

= aa — ab +  ba — bb 
= a2 — ab +  ab — b2 
= a2 -  ft2,
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We first multiply the first two factors, and obtain

(2* +  l)(x  -  2) = 2x(x -  2) +  1 (x -  2) 
= 2x2 -  4x +  x -  2 
= 2x2 -  3x -  2.

We now multiply this last expression with x +  5 and obtain

(2* +  l)(x  -  2)(x +  5) = (2x2 -  3x -  2)(x +  5)
= (2x2 -  3x -  2)x +  (2x2 -  3x -  2)5 
= 2x3 — 3x2 — 2x +  10x2 — 15* — 10 
= 2x3 +  7x2 -  17* -  10,

which is the desired answer.

EXERCISES

1. Express each of the following expressions in the form 2m3naTb’ , where m, 
n, r, s are positive integers.

3. Obtain expansions for (a +  b)4 and (a — b)4 similar to the expansions 
for (a +  b)3 and (a — b)3 of the preceding exercise.

Expand the following expressions as sums of powers of x multiplied by 
integers. These are in fact called polynomials. You might want to read, or 
at least look at, the section on polynomials later in the book (Chapter 13, §2).

a) 8a263(27o4)(25a6)
c) 32(2a6)3(16a2b5) (24i2a)
e) (3a6)2(27a36)(16a65)

b) 16i3a2(6ai4)(a6)3 
d) 24a3(2a62)3(3a6)2
f) 32aib5a3b2 (6ai3 )4

2. Prove:
(a +  b)3 = a3 +  3a26 +  3o62 +  b3, 
(a — b)3 = a3 — 3 a2b +  3oi2 — b3.

4. (2 -  4*)2 5. (1 -  2x)2
6. (2* +  5)2 7. (* -  l ) 2
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8. (x +  1)(* -  1)
10. (x2 +  l)(x2 — 1)
12. (x2 +  l ) 2
14. (x2 +  2)2
16. (x3 -  4)2
18. (2x2 +  l)(2x2 -  1)
20. (* +  1)(2* +  5)(* -  2)
22. (3* -  l)(2x +  1)(* +  4)
24. ( -4 *  +  1)(2 -  *)(3 +  x)
26. (x -  l ) 2(3 -  x)
28. (1 -  2jc) 2 (3 +  4*)

9. (2* +  1)(* +  5)
11. (1 +  x3)(l -  x3)
13. (x2 -  l ) 2
15. (x2 -  2)2
17. (x3 -  4)(x3 +  4)
19. ( - 2  +  3 * )(-2  -  3*)
21. (2x +  1)(1 -  *)(3* +  2)
23. ( - 1  -  * ) ( - 2  +  *)(1 -  2x)
25. (1 -  * ) (1 +  *)(2 -  *)
27. (1 -  *)2(2 -  x)
29. (2x +  1)2(2 -  3*)

30. The population of a city in 1910 was 50,000, and it doubles every 10 
years. What will it be (a) in 1970 (b) in 1990 (c) in 2,000?

31. The population of a city in 1905 was 100,000, and it doubles every 25 
years. What will it be after (a) 50 years (b) 100 years (c) 150 years?

32. The population of a city was 200 thousand in 1915, and it triples every 
50 years. What will be the population
a) in the year 2215? b) in the year 2165?

33. The population of a city was 25,000 in 1870, and it triples every 40 years. 
What will it be
a) in 1990? b) in 2030?

§4. EVEN AND ODD INTEGERS; DIVISIBILITY
We consider the positive integers 1, 2, 3, 4, 5 , . . . ,  and we shall distinguish 

between two kinds of integers. We call

1, 3, 5, 7, 9, 11, 13, . . .

the odd integers, and we call

2, 4, 6, 8, 10, 12, 14, . . .
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the even integers. Thus the odd integers go up by 2 and the even integers 
go up by 2. The odd integers start with 1, and the even integers start with
2. Another way of describing an even integer is to say that it is a positive 
integer which can be written in the form 2n for some positive integer n. 
For instance, we can write

2 = 2 1 ,
4 = 2-2,
6 = 2-3,
8 = 2-4,

and so on. Similarly, an odd integer is an integer which differs from an even 
integer by 1, and thus can be written in the form 2m — 1 for some positive 
integer m. For instance,

1 = 2 1 - 1 ,
3 = 2 • 2 -  1,
5 = 2 3 - 1 ,
7 = 2 * 4  — 1,
9 = 2 • 5 -  1,

and so on. Note that we can also write an odd integer in the form

2n +  1

if we allow n to be a natural number, i.e., allowing n = 0. For instance, we 
have

1 = 2 0  +  1,
3 = 2 1  +  1,
5 = 2 • 2 +  1,
7 = 2 • 3 +  1,
9 = 2 4  +  1,

and so on.

Theorem 1. Let a, b be positive integers.
If a is even and b is even, then a +  b is even.
If a is even and b is oddy then a +  b is odd.
If a is odd and b is even, then a +  b is odd.
I f a is odd and b is odd, then a +  b is even.

Proof. We shall prove the second statement, and leave the others as 
exercises. Assume that a is even and that b is odd. Then we can write

a = 2n and b = 2k +  1
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for some positive integer n and some natural number k. Then

a, b — 27i “|“ 2k “I- 1 
= 2(n +  k) -(-1
= 2m +  1 (letting m = n +  k).

This proves that a +  b is odd.
Theorem 2• Let a be a positive integer. If a is even, then a2 is even. If a is 
odd, then a2 is odd.

Proof. Assume that a is even. This means that a = 2n for some positive 
integer n. Then

a2 = 2n • 2n = 2 (2m2) = 2m,

where m = 2m2 is a positive integer. Thus a2 is even.
Next, assume that a is odd, and write a = 2n +  1 for some natural 

number n. Then

a2 = (2  n +  l ) 2 = ( 2 m ) 2 +  2 ( 2 m )1  +  l 2 
= 4m2 +  4m +  1 
=  2  ( 2 m2 +  2 m ) +  1

= 2 ^  +  1 ,  where k = 2 m 2 +  2 m .

Hence a2 is odd, thus proving our theorem.
Corollary• Let a be a positive integer. If  a2 is even, then a is even. If  a2 
is odd, then a is odd.

Proof. This is really only a reformulation of the theorem, taking into 
account ordinary logic. If a2 is even, then a cannot be odd because the square 
of an odd number is odd. If a2 is odd, then a cannot be even because the 
square of an even number is even.

We can generalize the property used to define an even integer. Let d be 
a positive integer and let n be an integer. We shall say that d divides n, or 
that m is divisible by d if we can write

m = dk

for some integer k. Thus an even integer is a positive integer which is 
divisible by 2. According to our definition, the number 9 is divisible by 3 
because

9  =  3 - 3 .



Also, 15 is divisible by 3 because

15 = 3 • 5.

Also, —30 is divisible by 5 because

-3 0  = 5( —6).

Note that every integer is divisible by 1, because we can always write

n = 1 • 7i.

Furthermore, every positive integer is divisible by itself.
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EXERCISES

1. Give the proofs for the cases of Theorem 1 which were not proved in 
the text.

2. Prove: If a is even and b is any positive integer, then ab is even.

3. Prove: If a is even, then a3 is even.

4. Prove: If a is odd, then a3 is odd.

5. Prove: If n is even, then ( — l )n = 1.

6. Prove: If n is odd, then ( — l ) n = —1.

7. Prove: If m, n are odd, then the product mn is odd.

Find the largest power of 2 which divides the following integers.
8. 16 9. 24 10. 32 11. 20

12. 50 13. 64 14. 100 15. 36

Find the largest power of 3 which divides the following integers.
16. 30 17. 27 18. 63 19. 99
20. 60 21. 50 22. 42 23. 45
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24. Let a, b be integers. Define a =  b (mod 5), which we read “ a is congruent 
to b m odulo 5” , to mean that a — b is divisible by 5. Prove: If a =  b 
(mod 5) and x =  y  (mod 5), then

a +  x =  b +  y  (mod 5)
and

ax =  by (mod 5).

25. Let d be a positive integer. Let a, b be integers. Define

a = b  (mod d)

to mean that a — b is divisible by d. Prove that if a =  b (mod d) and 
x =  y  (mod d), then

a +  x =  b +  y  (mod d)
and

ax =  by (mod d).

26. Assume that every positive integer can be written in one of the forms Sk9 
Sk +  1, 3& +  2 for some integer k. Show that if the square of a positive 
integer is divisible by 3, then so is the integer.

§5. RATIONAL NUMBERS

By a rational number we shall mean simply an ordinary fraction, 
that is a quotient

— also written m/n, n

where m, n are integers and n 0. In taking such a quotient m/n, we 
emphasize that we cannot divide by 0, and thus we must always be sure 
that n t* 0. For instance,

1 2  3 5
4 3* 4 ’ 7

are rational numbers. Finite decimals also give us examples of rational 
numbers. For instance,

1 14  ̂ 141
1 4 - 1 0  and 141 - 100 '

Just as we did with the integers, we can represent the rational numbers 
on the line. For instance, J lies one-half of the way between 0 and 1, while
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§ lies two-thirds of the way between 0 and 1, as shown on the following 
picture.

The negative rational number — f  lies on the opposite side of 0 at a distance 
| from 0. On the next picture, we have drawn — J and —f.

-2  - 3  _ a  o i 1 f ? 2

Fig. 1-6

There is no unique representation of a rational number as a quotient of 
two integers. For instance, we have

1 2
2 — 4

We can interpret this geometrically on the line. If we cut up the segment 
between 0 and 1 into four equal pieces, and we take two-fourths of them, 
then this is the same as taking one-half of the segment. Picture:

0 i i - 3 i  Fig. 1-7

We need a general rule to determine when two expressions of quotients 
of integers give the same rational numbers. We assume this rule without 
proof. It is stated as follows.

Rule for  cross-multiplying. Let m, n, r, s be integers and assume that
n 5* 0 and s ^  0. Then

— = - if and only if ms = m. n s
The name “ cross-multiplying” comes from our visualization of the rule 

in the following diagram:

Example. We have

because

1 = 2
2 "  4

1 • 4 = 2 • 2.
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Also, we have

because

? = —
7 21 

3 • 21 = 9 • 7

(both sides are equal to 63).

We shall make no distinction between an integer m and the rational 
number m/1. Thus we write

mm = m/1 = — •

With this convention, we see that every integer is also a rational number. 
For instance, 3 = 3/1 and —4 = —4/1.

Observe the special case of cross-multiplying when one side is an integer. 
For instance:

2n 6 2n _  _ _  30 _—  -  -  > —  -  6, 2re-30,  n -  - j  -  15

are all equivalent formulations of a relation involving n.
Of course, cross-multiplying also works with negative numbers. For 

instance,
- 4  8 
5 -1 0

because
(_4)(  —10) = 8 - 5

(both sides are equal to 40).

Remark. For the moment, we are dealing with quotients of integers and 
describing how they behave. In the next section we shall deal with multi­
plicative inverses. There, you can see how the rule for cross-multiplication 
can in fact be proved from properties of such an inverse. Some people view 
this proof as the reason why cross-multiplication “works” . However, in 
some contexts, one wants to define the multiplicative inverse by using the 
rule for cross-multiplication. This is the reason for emphasizing it here 
independently.

Cancellation rule fo r  fractions. Let a be a non-zero integer. Letm, n be 
integers, n 0. Then

am _  m 
an n
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Proof. To test equality, we apply the rule for cross-multiplying. We 
must verify that

(<am)n = m(an), 

which we see is true by associativity and commutativity.

The examples which we gave are special cases of this cancellation rule. 
For instance

_4  = ( —2)(—4) = _ 8 _
5 ( -2 )5  -1 0

In dealing with quotients of integers which may be negative, it is useful 
to observe that

— m _  m 
n —n

This is proved by cross-multiplying, namely we must verify that
( — m)(— n) = TTiTi,

which we already know is true.
The cancellation rule leads us to use the notion of divisibility already 

mentioned in §4. Indeed, suppose that d is a positive integer and tti, n are 
divisible by d (or as we also say, that d is a com m on divisor of m and ti). 
Then we can write

tti = dr and n = ds 

for some integers r and s, so that
tti dr _ r 
n ds s

We see that our cancellation rule is applicable.

Example. We have
10 2 -5  2
15 “  3 • 5 “  3

because 10 and 15 are both divisible by 5.
We say that a rational number is positive if it can be written in the form 

m'ti, where tti, n are positive integers. Let a be a positive rational number. 
We shall say that a is expressed in lowest form as a fraction

ra = - s
where r, s are positive integers if the only common divisor of r and s is 1.
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Theorem 3. Any positive rational number has an expression as a fraction 
in lowest form.

Proof. First write a given positive rational number as a quotient of 
positive integers m/n. We know that 1 is a common divisor of m and n. 
Furthermore, any common divisor is at most equal to m or n. Thus among all 
common divisors there is a greatest one, which we denote by d. Thus we 
can write

m = dr and n = ds 

with positive integers r and s. Our rational number is equal to

m _  dr _  r 
n ds s

All we have to do now is to show that the only common divisor of r and s is
1. Suppose that e is a common divisor which is greater than 1. Then we 
can write

r = ex and s = ey

with positive integers x and y. Hence

m = dr = dex and n = ds = dey.

Therefore de is a common divisor for m and n, and is greater than d since e is 
greater than 1. This is impossible because we assumed that d was the greatest 
common divisor of m and n. Therefore 1 is the only common divisor of r and 
s, and our theorem is proved.

Example. Any positive rational number can be expressed as a quotient 
m/n, where m, n are positive integers which are not both even, because if 
m/n is the expression of this rational number in lowest form, then 2 cannot 
divide both m and n, and therefore at least one of them must be odd.

Let
m . r— andn s

be rational numbers, expressed as quotients of integers. We can put these 
rational numbers over a common denominator ns by writing

m ms , r nr— = —  and -  = — • n ns s ns
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For instance, to put 3/5 and 5/7 over the common denominator 5 • 7 = 35, 
we write

3 3 -7  21 , 5 5 -5  25
5

3 -7  21 
F ^ * 3 5  “ d 7*5 35

This leads us to the formula for the addition of rational numbers. 
Consider first a special case, when the rational numbers have a common 
denominator, for instance,

3 8 = 11
5 +  5 5 ‘

This is reasonable just from the interpretation of rational numbers: If we 
have three-fifths of something, and add eight-fifths of that same thing, then 
we get eleven-fifths of that thing. In general, we can write the rule for 
addition when the rational numbers have a common denominator as

Example. We have
- 5  2 - 3
8 +  8 “  8

When the rational numbers do not have a common denominator, we get 
the formula for their addition by putting them over a common denominator. 

m rNamely, let — and -  be rational numbers, expressed as quotients of integers
n s

m, n and r, s with n j* 0 and s j* 0. Then we have seen that
r nr
s ns

m sm— = —  and n sn

Thus our rational numbers now have the common denominator sn, and thus 
the formula for addition in this general case is

Example. We have
7 +  4*5 

35
21 +  20 41

35 “  35



3 2 NUMBERS [1 , §5]

Example. We have

( — 5) • 7 +  2 -3  
14

- 2 9
14

Example. We have

2 1 - 2 0  1
-2 8  -2 8

Using our rule for adding rational numbers, we conclude at once: 

The sum of positive rational numbers is also positive.

Observe that our number 0 has the property that

for any integer n 0. Indeed, applying our test for the equality of two 
fractions, we must verify that

This is easily seen using the analogous property for integers. Namely, write 
a = m/n, where m, n are integers, and n 9* 0. Then

and similarly on the other side.
Let a = m/n be a rational number, where m, n are integers and n 0. 

Then we have

0 1 = 0 • 71,

and this is true because both sides are equal to 0. 
For any rational number a, we have

0 +  a = a +  0 = a.

771

71
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For this reason, we shall write

— m _  m 
n n

By a previous remark, we also see that

m _  m 
n —n

This shows how a minus sign can be moved around the various terms of a 
fraction without changing the value of the fraction.

A rational number which can be written as a fraction
m _  — m _  m 
n n —n

where m, n are positive integers will be called negative. For example, the 
number

3 - 3  _  3 
- 5  5 “  5

is negative. Using the definition of addition of rational numbers, you can 
easily verify for yourselves that a sum of negative rational numbers is 
negative.

Addition of rational numbers satisfies the properties of commutativity and 
associativity.

Just as we did for integers, the above statement will be accepted without 
proof. It is in fact a general property of much more general numbers, which 
will be restated again for these numbers in the next section.

In §2, we proved a number of properties of addition using only commutativity 
and associativity, together with the rules

0 +  a = a and a +  ( —a) = 0.
These properties therefore remain valid for rational numbers. Similarly, all 
the exercises of §2 remain valid for rational numbers.

This remark will again be made later whenever we meet a similar situation. 
For instance, we see as before that

if a +  b = 0, then b = —a.
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We just add —a to both sides of the equation a +  6 = 0. In words, we can 
say: To test whether a given rational number is equal to minus another, all 
we need to verify is that the sum of the numbers is equal to 0.

We shall now give the formula for multiplication of rational numbers. 
This formula is:

m r mr
— • — =  —  •

n s ns

Thus to take the product of two rational numbers, we multiply their numer­
ators and multiply their denominators. More precisely, the numerator of 
the product is the product of the numerators, and the denominator of the 
product is the product of the denominators.

Example. We have
3 7 = 21
5 ’ 8 40 '

Also,
2 11 = 22
7 16 112'

We can write this last fraction in simpler form, namely

2 11 2 • 11 
7 ’ 16 “  7 • 2 • 8 ’

We can then cancel 2 and get

2 11 = 11
7 ’ 16 56 ‘

This shows that sometimes it is best not to carry out a multiplication before 
looking at the possibility of cancellations.

Example. We have

- 4  7 ( -4 )7  -2 8  28
5 ’ - 3  ”  5 (—3) ”  -15  ”  15 ‘

Example. Let a = m/n be a rational number expressed as a quotient of 
integers. Then
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Similarly,
TV* TV* TV* r v , 33 171 171 171 171

n n n n3 

In general, for any positive integer k, we have
k

\ n )  ri
m
T

Example. We have

Also,
(if - h -§

81
525 ’

Example. A chemical substance disintegrates in such a way that it gets 
halved every 10 min. If there are 20 grams (g) of the substance present at a 
given time, how much will be left after 50 min?

This is easily done. At the end of 10 min, we have -  • 20 g left. At the
1 2 

end of 20 min, we have — • 20 g left, and so on; at the end of 50 min, we have 
2Z

“  • 20 = —25 v 32

grams left. This is a correct answer. If you want to put the fraction in lowest 
form, you may do so, and then you get the answer in the form f  g. You can 
also put it in approximate decimals, which we don’t do here.

We ask: Is there a positive rational number a whose square is 2? The 
answer is at first not obvious. Such a number would be a square root of 2. 
Note that l 2 = 1 • 1 = 1 and 22 = 4. Thus the square of 1 is smaller than
2 and the square of 2 is bigger than 2. Any positive square root of 2 will 
therefore lie between 1 and 2 if it exists. We could experiment with various 
decimals to see whether they yield a square root of 2. For instance, let us 
try the decimal just in the middle between 1 and 2. We have

(1.5)2 = 2.25,

which is bigger than 2. Thus 1.5 is not a square root of 2, and is too big to 
be one.
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We could try more systematically, namely:

(1.1)2 = 1.21 (too small),
(1.2)2 = 1.44 (too small),
(1.3)2 = 1.69 (too small),
(1.4)2 = 1.96 (too small but coming closer).

We know that 1.5 is too big, and hence we must go to the next decimal 
place to try out further.

(1.41)2 = 1.9881 (too small),
(1.42)2 = 2.0164 (too big).

Thus we must go to the next decimal place for further experimentation. 
We try successively (1.411)2, (1.412)2, (1.413)2, (1.414)2 and find that they 
are too small. Computing (1.415)2 we see that it is too big. We could keep 
on going like this. There are several things to be said about our procedure.
(1) It is very systematic, and could be programmed on a computer.
(2) It gives us increasingly good approximations to a square root of 2, 

namely it gives us rational numbers whose squares come closer and closer 
to 2.

However, to find a rational number whose square is 2, the' procedure 
is a bummer because of the following theorem.

Theorem 4. There is no positive rational number whose square is 2.

Proof. Suppose that such a rational number exists. We can write it in 
lowest form m/n by Theorem 3. In particular, not both m and n can be even. 
We have

Consequently, we obtain

m2 = 2 n2,

and therefore m2 is even. By the Corollary of Theorem 2 of §4, we conclude 
that m must be even, and we can therefore write

m = 2k

for some positive integer k. Thus we obtain

m2 = (2k)2 = 4k2 = 2 n2.
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We can cancel 2 from both sides of the equation

4k2 = 2n2,

and obtain
n2 = 2k2.

This means that n2 is even, and as before, we conclude that n itself must be 
even. Thus from our original assumption that (m/n)2 = 2 and m/n is in 
lowest form, we have obtained the impossible fact that both m, n are even. 
This means that our original assumption (m/n)2 = 2 cannot be true, and 
concludes the proof of our theorem.

A number which is not rational is called irrational. From Theorem 4, 
we see that if a positive number a exists such that a2 = 2, then a must be 
irrational. We shall discuss this further in the next section dealing with 
real numbers in general.

Multiplication of rational numbers satisfies the same basic rules as 
multiplication of integers. We state these once more:

For any rational number a we have la = a and Oa = 0. Furthermore, 
multiplication is associative, commutative, and distributive with respect to 
addition.

As before, we assume these as properties of numbers. Moreover, we have 
the same remark for multiplication that we did for addition. All the properties 
of §3 which were proved using only the basic ones are therefore also valid 
for rational numbers. Thus the formulas which we had, like

(a +  b)2 = a2 +  2 ab +  b2,

are now seen to be valid for rational numbers as well. All the exercises at the 
end of §3 are valid for rational numbers.

Example. Solve for a in the equation

3a -  1 = 7.

We add 1 to both sides of the equation, and thus obtain

3a = 7 +  1 = 8.

We then divide by 3 and get
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Example. Solve for x in the equation

2(x -  3) = 7.

To do this, we use distributivity first, and get the equivalent equation

2x — 6 = 7.
Next we find

2x = 7 +  6 = 13,
whence

13* = - •

Of course we could have given other arguments to find the answer. For 
instance, we could first get

7

whence
* - 3 = 2

* = \ +  3-

This is a perfectly correct answer. However, we can also give the answer in 
fraction form. We write 3 = §, and find that

7 , 6  13x = — 4- — = — •2 2 2

Example. Solve for x in the equation

3jly 1  + 4 -  ^

We multiply both sides of the equation by 2 and obtain

3s -  7 +  8 = Ax.

We then add — 3jc to both sides, to get

1 = 4x — 3x = x.

This solves our problem.
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EXERCISES

1 . Solve for a in the following equations.
n o 3 un 3a „  . - 5 a 3

4 b) T  -  - 7 c) —  -  8
2. Solve for x in the following equations.

a) 3jc — 5 = 0 b) —2x +  6 = 1 c) —Ix = 2

3. Put the following fractions in lowest form.

 ̂ 10 M 3 \ 3° 50
а) 26 b) 9 C) 26 d) 16

, 45 62 23 , . 16
б) 9 ) A g) 46 } 40

4. Let a = m/n be a rational number expressed as a quotient of integers 
m, n with m 0 and n 0. Show that there is a rational number b 
such that ab = ba = 1.

5. Solve for x in the following equations.

a) 2x — 7 = 21 b) 3(2* -  5) = 7 c) (4* -  1)2 = \4
d) —4x +  3 = 5x e) 3x — 2 = —5x +  8 f) 3x +  2 = —3x +  4

4x 3x 4 2x — 1g) f  +  1 = 3* h) - f +  1 = 5 . i) ^ 3- ^  +  4x = 10

6. Solve for x in the following equations.

a ) 2 * - |  = | +  l  b) | * +  5 = -7 x  c) -=| * = 3x -  1

JS 4x t 3 0 c s 4(1 — 3x) n , 2 -  x 7d) — +  -  = 2x — 5 e) ------ -̂-------- 2x -  1 f) — -- ------ g *

7. Let re be a positive integer. By n factorial, written n\, we mean the 
product

1 • 2 • 3 • • • n 

of the first n positive integers. For instance,

2! = 2,
3! = 2 - 3  = 6,
4! = 2 • 3 • 4 = 24.

a) Find the value of 5!, 6!, 7!, and 8!.
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b) Define 0! = 1. Define the binomial coefficient

(m\ _  ml 
n )  n!(m — n)\

for any natural numbers m, n such that n lies between 0 and m. 
Compute the binomial coefficients

can be selected out of m things. You may want to look at the discus­
sion of Chapter 16, §1 at this time to see why this is so.

c) Show that /  \ /  \
r) = ( m )•\n )  \m — n)

d) Show that if n is a positive integer at most equal to m, then

(:)+(„-O'C”:  O'
8. Prove that there is no positive rational number a such that a3 = 2.
9. Prove that there is no positive rational number a such that a4 = 2.

10. Prove that there is no positive rational number a such that a2 = 3 . You 
may assume that a positive integer can be written in one of the forms 
3k9 Sk +  1, 3k +  2 for some integer k. Prove that if the square of a 
positive integer is divisible by 3, then so is the integer. Then use a similar 
proof as for V2.

11. a) Find a positive rational number, expressed as a decimal, whose
square approximates 2 up to 3 decimals.

b) Same question, but with 4 decimals accuracy instead.
12. a) Find a positive rational number, expressed as a decimal, whose

square approximates 3 up to 2 decimals.
b) Same question but with 3 decimals instead.

13. Find a positive rational number, expressed as a decimal, whose square 
approximates 5 up to
a) 2 decimals, b) 3 decimals.
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14. Find a positive rational number whose cube approximates 2 up to 
a) 2 decimals, b) 3 decimals.

15. Find a positive rational number whose cube approximates 3 to 
a) 2 decimals, b) 3 decimals.

16. A chemical substance decomposes in such a way that it halves every 3 
min. If there are 6 grams (g) of the substance present at the beginning, 
how much will be left
a) after 3 min? b) after 27 min? c) after 36 min?

17. A chemical substance reacts in such a way that one third of the remaining 
substances decomposes every 15 min. If there are 15 g of the substance 
present at the beginning, how much will be left
a) after 30 min? b) after 45 min? c) after 165 min?

18. A substance reacts in water in such a way that one-fourth of the un­
dissolved part dissolves every 10 min. If you put 25 g of the substance 
in water at a given time, how much will be left after
a) 10 min? b) 30 min? c) 50 min?

19. You are testing the effect of a noxious substance on bacteria. Every 10 
min, one-tenth of the bacteria which are still alive are killed. If the 
population of bacteria starts with 106, how many bacteria are left after
a) 10 min? b) 30 min? c) 50 min?
d) Within which period of 10 min will half the bacteria be killed?
e) Within which period of 10 min will 70% of the bacteria be killed?
f) Within which period of 10 min will 80% of the bacteria be killed? 
[Note: If one-tenth of those alive are killed, then nine-tenths remain.]

20. A chemical pollutant is being emptied in a lake with 50,000 fishes. Every 
month, one-third of the fish still alive die from this pollutant. How many 
fish will be alive after
a) 1 month? b) 2 months?
c) 4 months? d) 6 months?
(Give your answer to the nearest 100.)
e) What is the first month when more than half the fish will be dead?
f) During which month will 80% of the fish be dead?
[Note: If one-third die, then two thirds remain.]

21. Every 10 years the population of a city is five-fourths of what it was 10 
years before. How many years does it take
a) before the population doubles? b) before it triples?
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§6. MULTIPLICATIVE INVERSES

Rational numbers satisfy one property which is not satisfied by integers, 
namely:

If a is a rational number 0, then there exists a rational number, denoted 
by a“ 1, such that

a~la = aa“ 1 = 1.

Indeed, if a = m/n where m, n are integers 0, then a~l = n/m because
m n _  mn _   ̂
n m mn

We call a-1 the multiplicative inverse of a.

Example. The multiplicative inverse of J is f, or simply 2, because

The multiplicative inverse of § is §. The multiplicative inverse of — f- is — 

Observe that if a and b are rational numbers such that

ab = 1,

then
b = a“ 1.

Proof. We multiply both sides of the relation ab = 1 by a-1, and get

a~lab = a-1 • 1 = a“ 1.

Using associativity on the left, we find

a~lab = 16 = 6,

so that we do find 6 = a“ 1 as desired.

From the existence of an inverse for non-zero rational numbers, we deduce:

If ab = 0, then a = 0 or 6 = 0.

Proof. Suppose a 0. Multiply both sides of the equation ab = 0 by 
a“ 1. We get:

a~lab = 0a“ 1 = 0.

On the other hand, a~lab = 16 = 6, so that we find 6 = 0, as desired.
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We shall use the same notation as for quotients of integers in taking 
quotients of rational numbers. We write

Our rule for cross-multiplication which applied to quotients of integers 
applies as well when we want to cross-multiply rational numbers. We state 
it, and prove it using only the basic properties of addition, multiplication, 
and inverses.

Cross-multiplication. Let a, 6, c, d be rational numbers, and assume that 
b 9̂  0 and d 0.

Proof. Assume that a/b = c/d. We can rewrite this relation in the form

-  or a/b instead of b la or ab x.o

Example. Let a = f  and b = j .  Then

3/4 = 3 / 5\~1 = 3 7 = 21 
5/7 ~ 4\7 /  ' 4 5 '  20

Example. We have

2 +  1 /6  — 4\_1
2 A 3 )

3 / 2\—1 3 3 9

a cIf t = -9  then ad = 6c. b a

If ad = be, then % — -y •6 d

b~la = d~lc.

Multiply both sides by db (which is the same as bd). We obtain

dbb~la = bdd~lc,

so that
da = be

because 66-1a = la = a, and similarly, dd~le = lc = c.



Conversely, assume that ad = be. Multiply both sides by b~ld~l, which 
is equal to d~lb~l. We find:

add~lb~l = d -lb~lbc,

whence
ab~l = d~lc.

This means that a/b = c/d, as desired.

Example. By cross-multiplying, we have 

if and only if
3 = 2 (jc — 1) = 2jc — 2,

which is equivalent to
3 +  2 = 2jc.

Thus we can solve for x, and get x = §.

Example. By cross-multiplying we have

4 +  x
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= 5jX
if and only if

R 1 5x4 +  x = 5 - x  = — •2 2

Again by cross-multiplication this is equivalent to

2(4 +  x) = 5s,
or

8 +  2x = 5jc.

Subtracting 2jc from both sides of this equation, we solve for x, and get

8

Cancellation law for  multiplication. Let a be a rational number 0. 

If ab = ac, then b = c.
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Proof. Multiply both sides of the equation ab = ac by a“ 1. We get

a~lab = a_1ac,

whence b = c.

We also have a cancellation law similar to that for quotients of integers. 

If a, b, c, d are rational numbers and a 0, c 0, then

ab b
ac c

This can be verified, for instance, by cross-multiplication, because we have

abc = bac

(using commutativity and associativity).
Thus we can operate with fractions formed with rational numbers much 

as we could operate with fractions formed with integers.

Example. If a/b and c/d are two quotients of rational numbers (and b 0, 
d 0), then we can put them over a “ common denominator” and write

a _  ad c be 
b = bd9 d ~ bd

Example. If x, y, b are rational numbers and 6 ^ 0 ,  then we can add 
quotients in a manner similar to the addition for quotients of integers, 
namely

l  +  l  - b - ' x  +  b -'y

= b~l (x +  y) by distributivity

=  ̂ \î  ~ ky definition.

Combining this with the “ common denominator” procedure of the preceding 
example, we find

This formula is entirely analogous to the formula expressing the sum of two 
rational numbers.
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Example. Show that

1 1 = 2x
x — y x +  y x2 -  y 2

To do this, we add the two quotients on the left by our general formula 
which we just derived, and get:

1(* +  y) +  1(* -  y) = x +  y  +  x -  y  = 2x 
(x — y)(x +  y) x2 — y 2 x2 -  y 2 ’

as was to be shown.

Remark. In the preceding example, the quotients l/(x — y) and l/(x +  y) 
make no sense if x — y  = 0 or x +  y  = 0. In such instances, we assume 
tacitly that x and y  are such that x — y  0 and x +  y j* 0. In the sequel 
we shall sometimes omit the explicit mention of such conditions if there is 
no danger of confusion.

Example. Solve for x in the equation

Sx +  1 .
2x~—~b =

We cross-multiply. For 2x — 5 j* 0, i.e. x 7* f , we find the equivalent 
equation

Sx +  1 = 4(2* -  5) = Sx -  20.

Hence
8x -  3x = 1 -  ( -20)  = 1 +  20 = 21.

This yields finally
5x = 21,

whence
21

Example. We give an example from the physical world. Suppose that an 
object is moving along a straight line at constant speed. Let s denote the 
speed, let d denote the distance traveled by the object, and let t denote the 
time taken to travel the distance d. Then in physics one verifies the formula

d = st.
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Of course, we must select units of time and distance before we can associate 
numbers with these. For instance, suppose that the distance traveled is 5 mi, 
and the time taken is \ hr. Then the speed is

s = d/t =  ̂ = 2 -5  mi/hr = 10 mi/hr.
~2 nr

Example. A person takes a trip and drives 8 hr, a distance of 400 mi. His 
average speed is 60 mph on the freeway, and 30 mph when he drives through 
a town. How long did the person drive through towns during his trip?

To solve this, let x be the length of time the person drives through towns. 
Then the length of time the person is on the freeway is 8 — x. The distance 
driven through towns is therefore equal to 30x, and the distance driven on 
freeways is 60(8 — x). Since the total distance driven is 400 mi, we have

30x +  60(8 -  x) = 400.

This is equivalent to the equations

30x +  480 -  60s =  400
and

80 = 30x.

Thus we find
80 8

* “  30 “  3 '

Hence the person spent § hrs driving through towns.

Example. The radiator of a car contains 8 qt of liquid, consisting of water 
and 40% antifreeze. How much should be drained and replaced by antifreeze 
if the resultant mixture should have 90% antifreeze?

Let x be the number of quarts which must be drained. After draining this 
amount, we are left with (8 — x) qt of liquid, of which 40% is antifreeze. 
Thus we are left with

40
i o o ( 8 - * ) q t

of antifreeze. Since we now add x qt of antifreeze, we see that x satisfies
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From this we can solve for x, transforming this equation into equivalent 
equations as follows:

This is a correct answer, but if you insist on putting the fraction in lowest 
form, then we can say that 6§ qt should be replaced by antifreeze.

Remark. The above examples, and the exercises, can also be worked using 
two unknowns. Cf. the end of Chapter 2, §1.

EXERCISES

1. Solve for x in the following equations.

40 . 40 90 
X  +  100 100 *  100 '

which amounts to
60 50 
100 X  100 '  ’

whence
400 20 
60 ”  3

jn o . r 3* — 2d) 2x +  5 = — ^—

f)
- 2 - 5 *  4 
—3* -  4 - 3

g)
—2 — Ix 1 — x

a r J- — ~4 5

i)
- 2  -  Ax 

3
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2. Prove the following relations. It is assumed that all values of x and y  
which occur are such that the denominators in the indicated fractions 
are not equal to 0.

x 1 1 - 2 y  *3 -  l  , , , 2a) — .---------------------  —5-------o b) ------- — = 1 +  x +  xx +  y  x — y  x 2 — y 2 x — 1

\ 1 1 1  1 2 , 3c)  -- =  1 +  X  +  X +  X
x — 1

xn — 1d)  — = xn~ 1 +  xn~ 2 +  • • • +  x +  1. [Hint: Cross-multiply and
x — 1
cancel as much as possible.]

3. Prove the following relations.

1  , 1  4 xa) +2 x +  y  2 x — y  4x2 — y 2

, 2x Sx +  1 x2 — 14* — 5
b) x +  5 2x +  1 2x2 +  U x  +  5 

. 1 i  2x
C) —  , o '  +x +  3y  x — 3y  x 2 — 9y 2

1 x = x +  y  +  3x2 -  2xy
3x — 2 y  x +  y  3x2 +  xy — 2y 2

For more exercises of this type, see Chapter 13, §2

4. Prove the following relations.

a ) ^ ^  = *2 +  *y +  y 2 x — y

b) Xx _  y  = x3 +  x2y  +  xy2 +  y 3

c) Let
1 - 12 , 21

* -  r + *  “ d y  -  r r ?

Show that x2 +  y 2 = 1.

5. Prove the following relations.
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b) - 6- t ~  =  x4 -  xa +  x2 -  x +  1
X  +  1

c) If n is an odd integer, prove that

=  S ’*“ 1 -  X n 2 +  X n ~ 3 ----------------- *  +  1 .

[Hint: Cross-multiply.]

6. Assume that a particle moving with uniform speed on a straight line 
travels a distance of f  ft at a speed of § ft/sec. What time did it take the 
particle to do that?

7. If a solid has uniform density d, occupies a volume v, and has mass m, 
then we have the formula

m = vd.

Find the density if
a) m = yo lb and v =  § in3, b) m = 6 lb and v = ^ in3,
c) Find the volume if the mass is 15 lb and the density is § lb/in3.

8. Let F  denote temperature in degrees Fahrenheit, and C the temperature 
in degrees centigrade. Then F  and C are related by the formula

C = |(F -  32).

Find C when F  is
a) 32, b) 50, c) 99, d) 100, e) -4 0 .

9. Let F  and C be as in Exercise 8. Find F  when C is:
a) 0, b) -1 0 , c) -4 0 , d) 37, e) 40, f) 100.

10. In electricity theory, one denotes the current by / ,  the resistance by R, 
and the voltage by E. These are related by the formula

E  = IR

(with appropriate units). Find the resistance when the voltage and 
current are:
a) E  = 10, I  = 3; b) E  =  220, I  =  10.

11. A solution contains 35% alcohol and 65% water. If you start with 
12 cm3 (cubic centimeters) of solution, how much water must be added 
to make the percentage of alcohol equal to
a) 20% ? b) 10% ? c) 5%?
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12. A plane travels 3,000 mi in 4 hr. When the wind is favorable, the plane 
averages 900 mph. When the wind is unfavorable, the plane averages 
500 mph. During how many hours was the wind favorable?

13. Tickets for a performance sell at $5.00 and $2.00. The total amount 
collected was $4,100, and there are 1,300 tickets in all. How many 
tickets of each price were sold?

14. A salt solution contains 10%  salt and weighs 80 g. How much pure 
water must be added so that the percentage of salt drops to
a) 4%? b) 6% ? c) 8% ?

15. How many quarts of water must you add to 6 qt of pure alcohol to get a 
mixture containing
a) 25% alcohol? b) 20% alcohol? c) 15% alcohol?

16. A boat travels a distance of 500 mi, along two rivers, for 50 hr. The 
current goes in the same direction as the boat along one river, and then 
the boat averages 20 mph. The current goes in the opposite direction 
along the other river, and then the boat averages 8 mph. During how 
many hours was the boat on the first river?

IT. How much water must evaporate from a salt solution weighing 2 lb and 
containing 25% salt, if the remaining mixture must contain
a) 40% salt? b) 60% salt?

IS. The radiator of a car can contain 10 gal of liquid. If it is half full with a 
mixture having 60% antifreeze and 40% water, how much more water 
must be added so that the resulting mixture has only
a) 40% antifreeze? b) 10% antifreeze?
Will it fit in the radiator?




