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1 Numbers

gl. THE INTEGERS

The most common numbers are those used for counting, namely the
numbers

11 21 3! 45 ’

which are called the positive integers. Even for counting, we need at least
one other number, namely,

0 (zero).

For instance, we may wish to count the number of right answers you may
get on a test for this course, out of a possible 100. If you get 100, then all
your answers were correct. If you get O, then no answer was correct.

The positive integers and zero can be represented geometrically on a line,
in a manner similar to a ruler or a measuring stick:

o 1 2 3 4 Fig. 1-1

For this we first have to select a unit of distance, say the inch, and then on
the line we mark off the inches to the right as in the picture.

For convenience, it is useful to have a name for the positive integers
together with zero, and we shall call these the natural numbers. Thus 0
is a natural number, so is 2, and so is 124,521. The natural numbers can be
used to measure distances, as with the ruler.

By definition, the point represented by 0 is called the origin.

The natural numbers can also be used to measure other things. For
example, a thermometer is like a ruler which measures temperature. However,
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the thermometer shows us that we encounter other types of numbers besides
the natural numbers, because there may be temperatures which may go below
0. Thus we encounter naturally what we shall call negative integers which
we call minus 1, minus 2, minus 3, ..., and which we write as

-1, -2, -3, -4, ...

We represent the negative integers on a line as being on the other side of O
from the positive integers, like this:

-4 -3 -2-10 | 2 Fig. 1-2

The positive integers, negative integers, and zero all together are called
the integers. Thus —9, 0, 10, —5 are all integers.

If we view the line as a thermometer, on which a unit of temperature has
been selected, say the degree Fahrenheit, then each integer represents a certain
temperature. The negative integers represent temperatures below zero.

Our discussion is already typical of many discussions which will occur in
this course, concerning mathematical objects and their applicability to
physical situations. In the present instance, we have the integers as mathe-
matical objects, which are essentially abstract quantities. We also have
different applications for them, for instance measuring distance or tempera-
tures. These are of course not the only applications. Namely, we can use the
integers to measure time. We take the origin O to represent the year of the
birth of Christ. Then the positive integers represent years after the birth of
Christ (called ad years), while the negative integers can be used to represent
bc years. With this convention, we can say that the year —500 is the year
500 bec.

Adding a positive number, say 7, to another number, means that we
must move 7 units to the right of the other number. For instance,

5+ 7 = 12.

Seven units to the right of 5 yields 12. On the thermometer, we would of

course be moving upward instead of right. For instance, if the temperature

at a given time is 5° and if it goes up by 7°, then the new temperature is 12°.
Observe the very simple rule for addition with 0, namely

NI.

for any integer a.
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What about adding negative numbers? Look at the thermometer again.
Suppose the temperature at a given time is 10°, and the temperature drops
by 15°. The new temperature is then —5°, and we can write

10 - 15 = -5.

Thus —5 is the result of subtracting 15 from 10, or of adding —15 to 10.

In terms of points on a line, adding a negative number, say —3, to another
number means that we must move 3 units to the left of this other number.
For example,

5+ (-3) =2
because starting with 5 and moving 3 units to the left yields 2. Similarly,
7+ (3) =4, and 3+ (-5) = -2.
Note that we have
3+ (-3) =0 or 5+ (-5) =0.

We can also write these equations in the form
(-3) +3 =0 or (-5) +5=0.

For instance, if we start 3 units to the left of 0 and move 3 units to the right,
we get 0. Thus, in general, we have the formulas (by assumption):

N2. a+ (—a) =0 and also —a+a=0.

In the representation of integers on the line, this means that a and —a lie
on opposite sides of 0 on that line, as shown on the next picture:

Fig. 1-3
Thus according to this representation we can now write
3=-(-3) or 5= -(-5).

In these special cases, the pictures are:
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Remark. We use the name
minus a for —a

rather than the words “negative a” which have found some currency recently.
I find the words “negative a” confusing, because they suggest that —a is a
negative number. This is not true unless a itself is positive. For instance,

3=-(-3)

is a positive number, but 3 is equal to —a, where a = —3, and a is a negative
number.

Because of the property
a+ (-a) =0,

one also calls —a the additive inverse of a.
The sum and product of integers are also integers, and the next sections
are devoted to a description of the rules governing addition and multiplication.

82. RULES FOR ADDITION
Integers follow very simple rules for addition. These are:

Commutativity. If a, bare integers, then

a+ b—6+ a

For instance, we have
3+5=5+ 3=38,
or in an example with negative numbers, we have
_2+5=3= 5+ (-2).

Associativity. If a, b, c are integers, then

@+ b+c=a+ (b+ o).
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In view of this, it is unnecessary to use parentheses in such a simple context,
and we write simply

z+ 6+ cC
For instance,

3+5 +9=8+9 =17,
3+ 5+ 9 =3+ 14 = 17.

We write simply
3+5+ 9 =17

Associativity also holds with negative numbers. For example,

(—=2+5 +4
-2+ 5+ 4

3+ 4 =17,
-2 + 9 =1

Also,

@2+ (-5)) + (-3)
2+ (-5 + (-3))

-3 + (-3) = -6,
2+ (-8) = -6.

The rules of addition mentioned above will not be proved, but we shall prove
other rules from them.
To begin with, note that:

N3. Ifa+ b=0 thenb ——aanda = —bh.

To prove this, add —a to both sides of the equation a + b = 0. We get
—z+az+6=_a+ 0= —.

Since —a + a+ 6 =0+ 6 = 6 we find

b= —a
as desired. Similarly, we find a = —6. We could also conclude that

= —(—a) = a

As a matter of convention, we shall write

a—>b

instead of
a+ (—6).
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Thus a sum involving three terms may be written in many ways, as follows:

@-b+c=(@+ (-6)) +c
=a+ (—6+ ¢ by associativity
=a+ (c—b by commutativity
=(@+c)—b by associativity,

and we can also write this sum as
a—b+ c=a+ ¢c—b,

omitting the parentheses. Generally, in taking the sum of integers, we can
take the sum in any order by applying associativity and commutativity
repeatedly.

As a special case of N3, for any integer a we have

N4. = —(—a).

This is true because
a+ (-a) =0,

and we can apply N3 with b = —a. Remark that this formula is true
whether a is positive, negative, or 0. If a is positive, then —a is negative.
If a is negative, then —a is positive. In the geometric representation of
numbers on the line, a and —a occur symmetrically on the line on opposite
sides of 0. Of course, we can pile up minus signs and get other relationships,
like
-3 = -(-(-3)),

or

=-(-3) =-(-(-(-3))).

Thus when we pile up the minus signs in front of a, we obtain a or —a
alternatively. For the general formula with the appropriate notation, cf.
Exercises 5 and 6 of §4.

From our rules of operation we can now prove:

For any integers a, b we have

—@+ b= —a+ (-9
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or, in other words,
NS5. —(@a+ b = —a—h

Proof. Remember that if x, y are integers, then x = —y andy = —x
mean that x + y = 0. Thus to prove our assertion, we must show that

@-kb) + (—a —6) =0.

But this comes out immediately, namely,

@+ b+ (—a—Db=a+b—a—>b by associativity
=a—a+ b—b by commutativity
=0+ 0
=0
This proves our formula.
Example. We have
—@B38+5 =-3 -5=-8,
—(—4+5 =-(-4) - 5=4-5=-1,
—3—7=-3—(7) =-3 +7=4.

You should be very careful when you take the negative of a sum which
involves itself in negative numbers, taking into account that

—(—a) = a.

The following rule concerning positive integers is so natural that you
probably would not even think it worth while to take special notice of it.
We still state it explicitly.

If a, b are positive integers, then a + b is also a positive integer.

For instance, 17 and 45 are positive integers, and their sum, 62, is also a
positive integer.

We assume this rule concerning positivity. We shall see later that it also
applies to positive real numbers. From it we can prove:

If a, b are negative integers, then a + b is negative.
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Proof. We can write a — —n and b = —m, where m, n are positive.
Therefore
a+t+b=-—1mnn—m=—(a+ m)

which shows that a + b is negative, because n + m is positive.

Example. If we have the relationship between three numbers

a+ b=rc¢,

then we can derive other relationships between them. For instance, add —b
to both sides of this equation. We get

a+ b—b=c—b,

whence a + 0 = ¢ —b, or in other words,

a=c—h
Similarly, we conclude that
b=c¢c—a
For instance, if
X + 3 =5,
then
jc=5—3=2.
If
4 —a = 3,

then adding a to both sides yields
4 =3+ 3
and subtracting 3 from both sides yields

1 = a
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If
-2 -y =5
then
—A=y or y = —7
EXERCISES

Justify each step, using commutativity and associativity in proving the
following identities.

1L @+ b+ (c+ d

@+ d + (b+ 0

2 @+ b+ @Cc+d=@a+c)+ b+ d

3 @—b+(@cc—d =@+c)+ (—b—d
4. @—6) + (c—d) = (a+c) —(@®+ €O
5 @—6) + c—eO = (a—d) + (c —b)

6. @ —b)-FCc—d = —6-Fd) -} «-Fo
7. @—b+ (c—d) = —b+ d —(— —0)
8 (F+y)+2)+w=(X+2+ (Y+ W
9. (x—y) - @—Ww) = (Z+ W) —y —z

100 X —y) —(Z—w) = X —2) + (W—y)

11. Show that —(a + b+ ¢) = —a + (—6) + (—<%).
12. Show that —(@a —b —c¢) = —a + b+ c.
13. Show that —(a —b) = b —a.

Solve for x in the following equations.

14. -2 + x =4 15. 2 —x = 5
16. z —3 =7 17 —x+ 4= -4
18. 4 - x = 8 19. 6 —x = =2

200 —7 + x = -10 21. -3 + x =4
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22. Prove the cancellation law for addition:

Ifa+ 6 =a+ c, thenb = c.

23. Prove: Ifa+ b = a, then 6=0.

8§3. RULES FOR MULTIPLICATION

We can multiply integers, and the product of two integers is again an
integer. We shall list the rules which apply to multiplication and to its
relations with addition.

We again have the rules of commutativity and associativity:

ab = ba and (ab)c = a(6c).

We emphasize that these apply whether a, 6, ¢ are negative, positive, or zero.
Multiplication is also denoted by a dot. For instance

37 = 21,
and

(3 7) =4 = 21 <4 = 84,
3e(7-4) = 328 = 84.

For any integer a, the rules of multiplication by 1 and 0 are:

NG6. la = a and Oa = 0.

Example. We have

(2a) (36) = 2(a(36))
2(3a)6
(2 .3)a6

6ab.
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In this example we have done something which is frequently useful, namely
we have moved to one side all the explicit numbers like 2, 3 and put on the
other side those numbers denoted by a letter like a or b. Using commutativity
and associativity, we can prove similarly

(5x)(7y) = 35xy
or, with more factors,
(2a)(36)(5x) = SCabx.

We suggest that you carry out the proof of this equality completely, using
associativity and commutativity for multiplication.
Finally, we have the rule of distributivity, namely

alb + ¢) = ab + ac

and also on the other side,

6+ c)a = ba + ca.

These rules will not be proved, but will be used constantly. We shall, however,
make some comments on them, and prove other rules from them.

First observe that if we just assume distributivity on one side, and
commutativity, then we can prove distributivity on the other side. Namely,
assuming distributivity on the left, we have

6+ ca=ab+c) =a+ ac = ba+ ca,
which is the proof of distributivity on the right.
Observe also that our rule Ga = 0 can be proved from the other rules

concerning multiplication and the properties of addition. We carry out the
proof as an example. We have

*at+a=0kla=0O NHa-=Ia-=a

Thus
Ca+ a=a

Adding —a to both sides, we obtain

Ca+ a—a =a—a=0.
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The left-hand side is simply
la a—a =0Ql-}F0 =0Cq

so that we obtain Ga = 0, as desired.
We can also prove

b

N7. (—)a

Proof. We have
(hHha+a=(d)a+la=(—1+1la=0=0.
By definition, (—)a + a = 0 means that (—)a = —a, as was to be shown.

We have

N8. —(@b) = (—a)b.

Proof. We must show that (—a)b is the negative of ab. This amounts to
showing that
ab+ (—ab = 0.

But we have by distributivity
ab+ (—ab = (a+ (—a)b = 06 = 0,
thus proving what we wanted.

Similarly, we leave to the reader the proof that

NO. —(@6) = a(—ob).

Example. We have

—(3a) = (3)a = 3(-a).
Also,

4(a —56) = 4a — 206.

Also,

-3 (5a - 76) -15a + 216.
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In each of the above cases, you should indicate specifically each one of the
rules we have used to derive the desired equality. Again, we emphasize that
you should be especially careful when working with negative humbers and
repeated minus signs. This is one of the most frequent sources of error when
we work with multiplication and addition.

Example. We have

(-2a) (36) (4c) = (-2) -3 =4abc
= —24a6c.
Similarly,

(—4*) (330(—3¢)

(—4)5(—=3)xyc
60xyc.

Note that the product of two minus signs gives a plus sign.

Example. We have
() =r
To see this, all we have to do is apply our rule
—@6) = (—a)6 = a(—-ob).

We find
(-1 = -(1(-b) = -(-1) =1L

Example. More generally, for any integers a, 6 we have

N10. (—a) (—6) = ab.

We leave the proof as an exercise. From this we see that a product of two
negative numbers is positive, because if a, 6 are positive and —a, —6 are
therefore negative, then (—a) (—®6) is the positive number a6. For instance,
—3 and —5 are negative, but

(—8)(—H) = —3(-5)) = —(—3+=5)) = 15

Example. A product of a negative number and a positive number is
negative. For instance, —4 is negative, 7 is positive, and

(—4) 7 = -(4-7) = -28,

so that (—4) <7 is negative.
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When we multiply a number with itself several times, it is convenient to
use a notation to abbreviate this operation. Thus we write

aa = a2
aaa = a3,
aaaa = a4,

and in general if n is a positive integer,
an = aa ===*a (the product is taken n times).

We say that anis the n-th power of a. Thus a2 is the second power of a,
and a5is the fifth power of a.

If m, n are positive integers, then

Nil. ammn = anan

This simply states that if we take the product of a with itself m + n times,
then this amounts to taking the product of a with itself m times and
multiplying this with the product of a with itself n times.

Example
aZa3 = (aa)(aaa) = a2+s = aaaaa = ab.
Example
(AX)2 = 4X *4x = 4 *4xx = 16x2
Example

(7x)(2x)(5x) =12 - 5xxx = 70s3.

We have another rule for powers, namely

N12. (@amn = am

This means that if we take the product of a with itself m times, and then
take the product of amwith itself n times, then we obtain the product of a
with itself mn times.

Example. We have

(a3)4 = al2.
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Example. We have
(ab)n = arbn

because

(@b)n = abab -aft (product of ab with itself n times)

aa --.abb ---b

Example. We have

(2a3)5 = 25(a3)5 = 32al5.

Example. The population of a city is 300 thousand in 1930, and doubles
every 20 years. What will be the population after 60 years?

This is a case of applying powers. After 20 years, the population is
2 <300 thousand. After 40 years, the population is 22 <300 thousand. After
60 years, the population is 23300 thousand, which is a correct answer.
Of course, we can also say that the population will be 2 million 400 thousand.

The following three formulas are used constantly. They are so important
that they should be thoroughly memorized by reading them out loud and
repeating them like a poemyto get an aural memory of them.

@+ f)2 = a2+ 2ab + ft2 (a —ft)2 = a2 —2ab + ft2,

@+ 6)(@a—b = az2—f2

Proofs. The proofs are carried out by applying repeatedly the rules for
multiplication. We have:

@+ b)2=(a+ 6)a+ b

a(a 46) 3-6(a - b
aa -J} ab -I- ba -I- bb
a2+ ab+ ab+ b2
a2+ 2ab + ft2
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which proves the first formula.

@—b)2= (@a—hby(a—b) = a(@—b) —b(a —b)
= aa —ab —ba+ hb
= a2 —ab —ab + b2
= a2- 2ab + fi2

which proves the second formula.

aa —ab + ba —bb
= a2 —ab + ab —b2
a2 - ft2

@+ b)(a—b) = a(a —6) + 6(a —b)

which proves the third formula.

Example. We have
2+ 3x)2= 22+ 2 e2*Sx + (3x)2
=4+ 12x + 9x2
Example. We have
(8- 4x)2 = 32- 2 <3 <4x + (4x)2
=9 —24* + 16x2
Example. We have
(-2a + 5b)2 = 4a2 + 2(-2a)(56) + 2562
= 4a2 - 20a6 + 2562

Example. We have

(4a - 6)(4a + 6) (4a)2 - 36

16a2 - 36.

We have discussed so far examples of products of two factors. Of course,
we can take products of more factors using associativity.

Example. Expand the expression
2x + D(x - 2)(x + 5)

as a sum of powers of x multiplied by integers.
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We first multiply the first two factors, and obtain

2+ Hx - 2

2X(x - 2) + 1(x - 2)
2X2 - 4x + X - 2
2x2 - 3x - 2.

We now multiply this last expression with x + 5 and obtain

@+ (x - 2)(x + 5)

(2x2- 3 - 2)(x + 5)
(2x2- 3x - 2)x+ (2x2- 3x - 2)5
2x3 —3x2 —2x + 10x2 —15* — 10
2x3+ 7x2 - 17* - 10,

which is the desired answer.

EXERCISES

1. Express each of the following expressions in the form 2n3ra™®’, where m,
n, r, s are positive integers.

a) 8a263(2704)(256) b) 16i3a2(6ai4)(a6)3

c) 32(2a6)3(16a205) (24i2a) d) 24a3(2a62)3(3a6)2

e) (3a6)2(27a36)(16a65) f) 32aibm3b2(6ail)4
2. Prove:

(a+ b)3=a3+ 3ax% + 3062 + b3
(@ —b)3 = a3 —3ab + 30i2 —b3

3. Obtain expansions for (a + b)4 and (a —b)4 similar to the expansions
for (a + b)3and (a —b)3 of the preceding exercise.

Expand the following expressions as sums of powers of x multiplied by
integers. These are in fact called polynomials. You might want to read, or
at least look at, the section on polynomials later in the book (Chapter 13, §2).
4. (2 - 4%)2 5 (1 - 2x)2

6. (2 + 5)2 7..(*- N2
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8. x+ 1)(*- 1 9. 2+ 1)(* + 5)

10. x2+ 1)(x2—1) 11. 1 + x3)(1 - x3)

12. x2+ )2 13. x2- 1)2

14. (x2+ 2)2 15. x2- 2)2

16. (x3- 4)2 17. (x3 - 4)(x3 + 4)

18. (2x2+ 1)(2x2 - 1) 19. (-2 + 3*)(-2 - 3%
20. (* + 1)2* + 5)(* - 2 21, (2x + 1)1 - *)(3* + 2)
22. (3* - hH@2x + 1)(* + 4) 23. (-1 - *)(-2 + *)(1 - 2x)
24. (-4* + 1)(2 - *)@3 + x) 25. (1L - *)(1+ *)2 - ¥
26. (x - )23 - x) 27. (1 - *)2(2 - x)

28. (1 - 2j92(3 + 4% 29. (2x + 1)2(2 - 3%)

30. The population of a city in 1910 was 50,000, and it doubles every 10
years. What will it be (a) in 1970 (b) in 1990 (c) in 2,000?

31. The population of a city in 1905 was 100,000, and it doubles every 25
years. What will it be after (a) 50 years (b) 100 years (c) 150 years?

32. The population of a city was 200 thousand in 1915, and it triples every
50 years. What will be the population

a) in the year 2215? b) in the year 2165?

33. The population of a city was 25,000 in 1870, and it triples every 40 years.
What will it be

a) in 19907 b) in 2030?

84. EVEN AND ODD INTEGERS; DIVISIBILITY

We consider the positive integers 1, 2, 3,4, 5, ..., and we shall distinguish
between two kinds of integers. We call

1,35 79 11, 13, ...
the odd integers, and we call

2, 4,6, 8, 10, 12, 14, ...
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the even integers. Thus the odd integers go up by 2 and the even integers
go up by 2. The odd integers start with 1, and the even integers start with
2. Another way of describing an even integer is to say that it is a positive
integer which can be written in the form 2n for some positive integer n.
For instance, we can write

2=21,
4 =22,
6 = 2-3,
8 = 2-4,

and so on. Similarly, an odd integer is an integer which differs from an even
integer by 1, and thus can be written in the form 2m — 1 for some positive
integer m. For instance,

21-1,
2«2 -1,
23-1,
2*4 —1,
25 - 1

© N g w e
1

and so on. Note that we can also write an odd integer in the form
2n + 1

if we allow n to be a natural number, i.e., allowing n = 0. For instance, we
have

1=20 + 1]
3=21 + 1,
5=2e2+ 1,
7 =23+ 1
9=24 +1

and so on.

Theorem 1. Let a, b be positive integers.

If aiseven and b is even, thena + b is even.
If a is even and b is oddythen a + b is odd.
If aisodd and b is even, then a + b is odd.
If aisoddand b is odd, then a + b is even.

Proof. We shall prove the second statement, and leave the others as
exercises. Assume that a is even and that b is odd. Then we can write

a=2n and b=2k+ 1
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for some positive integer n and some natural number k. Then

a b—27“F2k"“ 1
2(n + K) -(-1
2m + 1 (lettingm = n + K).

This proves that a + bis odd.

Theorem 2« Let a be apositive integer. If a iseven, then a2iseven. Ifais
odd, then a2 is odd.

Proof. Assume that a is even. This means that a = 2n for some positive
integer n. Then

a2 = 2ne2n = 2(2mM) = 2m,

where m = 2nRis a positive integer. Thus a2is even.

Next, assume that a is odd, and write a = 2n + 1 for some natural
number n. Then

a2=cen+ 2= @m2+ 2¢2m)1 + 12
2+ dm+ 1

2(2m2 + 2m) + 1

= 2~ + 1, where K = 2m2 + 2m.

Hence a2 is odd, thus proving our theorem.

Corollarye= Let a be a positive integer. If a2 is even, then a is even. If a2
is odd, then a is odd.

Proof. This is really only a reformulation of the theorem, taking into
account ordinary logic. If a2is even, then a cannot be odd because the square
of an odd number is odd. If a2is odd, then a cannot be even because the
square of an even number is even.

We can generalize the property used to define an even integer. Let d be
a positive integer and let n be an integer. We shall say that d divides n, or
that - is divisible by d if we can write

m = dk

for some integer k. Thus an even integer is a positive integer which is
divisible by 2. According to our definition, the number 9 is divisible by 3
because
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Also, 15 is divisible by 3 because

15 = 3 <5,
Also, —30 is divisible by 5 because
-30 = 5(—6).

Note that every integer is divisible by 1, because we can always write
n = 1e7.

Furthermore, every positive integer is divisible by itself.

EXERCISES

1. Give the proofs for the cases of Theorem 1 which were not proved in
the text.

2. Prove: If ais even and b is any positive integer, then ab is even.
3. Prove: If ais even, then a3is even.

4. Prove: If ais odd, then a3is odd.

5. Prove: If nis even, then (—d)n= 1

6. Prove: If nis odd, then (d)n= —L

7. Prove: If m, n are odd, then the product mn is odd.

Find the largest power of 2 which divides the following integers.
8. 16 9. 24 10. 32 11. 20
12. 50 13. 64 14. 100 15. 36

Find the largest power of 3 which divides the following integers.
16. 30 17. 27 18. 63 19. 99
20. 60 21. 50 22. 42 23. 45
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24. Leta, b be integers. Definea = b (mod 5), which weread “a iscongruent
to b modulo 5”, to mean that a —b is divisible by 5. Prove: Ifa= b
(mod 5) and x = y (mod 5), then

a+ x=Db+y (modb5)
and
ax = by (mod5).

25. Let d be a positive integer. Let a, b be integers. Define
a=b (mod d)

to mean that a —b is divisible by d. Prove that if a= b (mod d) and
X =y (mod d), then

a+ x=b+y (modd)
and
ax= by (mod d).

26. Assume that every positive integer can be written in one of the forms Sk9
Sk + 1, 3& + 2 for some integer k. Show that if the square of a positive
integer is divisible by 3, then so is the integer.

85. RATIONAL NUMBERS

By a rational number we shall mean simply an ordinary fraction,
that is a quotient

™ also written m/n,

where m, n are integers and n 0. In taking such a quotient m/n, we
emphasize that we cannot divide by 0, and thus we must always be sure
that n & 0. For instance,

12 3 5

4 3* 4’ 7
are rational numbers. Finite decimals also give us examples of rational
numbers. For instance,

1 14 n 141
14-10 and 141 - 100°

Just as we did with the integers, we can represent the rational numbers
on the line. For instance, J lies one-half of the way between 0 and 1, while
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§ lies two-thirds of the way between 0 and 1, as shown on the following
picture.

The negative rational number —f lies on the opposite side of 0 at a distance
| from 0. On the next picture, we have drawn —J and —f.

-2 " . 0 i 1 f 2 2
Fig. 1-6

There is no unique representation of a rational number as a quotient of
two integers. For instance, we have

1 2
2 —4

We can interpret this geometrically on the line. If we cut up the segment
between 0 and 1 into four equal pieces, and we take two-fourths of them,
then this is the same as taking one-half of the segment. Picture:

0 i i - 3 i Fig. 1-7

We need a general rule to determine when two expressions of quotients
of integers give the same rational numbers. We assume this rule without
proof. It is stated as follows.

Rulefor cross-multiplying. Let m, n, r, s be integers and assume that
n5 0ands ~ 0. Then

- if and only if ms = m.
n s

The name “cross-multiplying” comes from our visualization of the rule
in the following diagram:

Example. We have

N -
AN

because
led = 2 <2
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Also, we have

~

21
because

321 = 97
(both sides are equal to 63).

We shall make no distinction between an integer m and the rational
number m/1. Thus we write

With this convention, we see that every integer is also a rational number.
For instance, 3 = 3/1 and —4 = —4/1.

Observe the special case of cross-multiplying when one side is an integer.
For instance:

@__6> @76, 2re=30, n=—310=15

are all equivalent formulations of a relation involving n.
Of course, cross-multiplying also works with negative numbers. For
instance,
-4 8
5 -10
because
(_4)(—10) =8-5

(both sides are equal to 40).

Remark. For the moment, we are dealing with quotients of integers and
describing how they behave. In the next section we shall deal with multi-
plicative inverses. There, you can see how the rule for cross-multiplication
can in fact be proved from properties of such an inverse. Some people view
this proof as the reason why cross-multiplication “works”. However, in
some contexts, one wants to define the multiplicative inverse by using the
rule for cross-multiplication. This is the reason for emphasizing it here
independently.

Cancellation rulefor fractions. Leta bea non-zero integer. Letm, n be
integers, n 0. Then

am m

an n
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Proof. To test equality, we apply the rule for cross-multiplying. We
must verify that

@m)n = m(an),
which we see is true by associativity and commutativity.

The examples which we gave are special cases of this cancellation rule.
For instance

4= (2)(4 = _8_
5 (-2)5 -10
In dealing with quotients of integers which may be negative, it is useful
to observe that

This is proved by cross-multiplying, namely we must verify that
(—m)(—n) = TIT,

which we already know is true.

The cancellation rule leads us to use the notion of divisibility already
mentioned in 84. Indeed, suppose that d is a positive integer and tti, n are
divisible by d (or as we also say, that d is a common divisor of m and ti).
Then we can write

ti = dr and n = ds

for some integers r and s, so that

i dr _r
n ds

We see that our cancellation rule is applicable.

Example. We have
10 2-5 2
15« 3«5 “ 3
because 10 and 15 are both divisible by 5.

We say that a rational number is positive if it can be written in the form
m 'ti, where tti, n are positive integers. Let a be a positive rational number.
We shall say that a is expressed in lowest form as a fraction

r
a=-
S

where r, s are positive integers if the only common divisor of r and s is 1.
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Theorem 3. Any positive rational number has an expression as a fraction
in lowest form.

Proof. First write a given positive rational number as a quotient of
positive integers m/n. We know that 1 is a common divisor of m and n.
Furthermore, any common divisor is at most equal to mor n. Thus among all
common divisors there is a greatest one, which we denote by d. Thus we
can write

m = dr and n = ds
with positive integers r and s. Our rational humber is equal to

m_dr_r
n ds s

All we have to do now is to show that the only common divisor of r and s is
1. Suppose that e is a common divisor which is greater than 1. Then we
can write

r = ex and S = ey
with positive integers x andy. Hence
m = dr = dex and n = ds = dey.

Therefore de is a common divisor for m and n, and is greater than d since ¢ is
greater than 1. This is impossible because we assumed that d was the greatest
common divisor of mand n. Therefore 1 is the only common divisor of r and
s, and our theorem is proved.

Example. Any positive rational number can be expressed as a quotient
m/n, where m, n are positive integers which are not both even, because if
m/n is the expression of this rational number in lowest form, then 2 cannot
divide both m and n, and therefore at least one of them must be odd.

Let
m .
— and
n

be rational numbers, expressed as quotients of integers. We can put these
rational numbers over a common denominator ns by writing
m _ ms r_nr

— = — and
n ns S ns
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For instance, to put 3/5 and 5/7 over the common denominator 5 7 = 35,
we write

3 3-7 21 , 5 5-5 25

5 F~*35 “d 75 35

This leads us to the formula for the addition of rational numbers.
Consider first a special case, when the rational numbers have a common
denominator, for instance,

3 8=1

5+ 5 5
This is reasonable just from the interpretation of rational numbers: If we
have three-fifths of something, and add eight-fifths of that same thing, then

we get eleven-fifths of that thing. In general, we can write the rule for
addition when the rational numbers have a common denominator as

Example. We have
-5 2 -3
8 . 8. 8

When the rational numbers do not have a common denominator, we get
the formula for their addition by putting them over a common denominator.

m r . . .
Namely, let Fand < be rational numbers, expressed as quotients of integers

m, nand r, swith n j* 0 and s j* 0. Then we have seen that
m _ sm r nr

— = — and
n sn S ns

Thus our rational numbers now have the common denominator sn, and thus
the formula for addition in this general case is

Example. We have

7+ 4*5 21+ 20 4
35 35 “ 35
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Example. We have

(—b) =7 + 2-3 -29

14 14
Example. We have
21-20 1
-28 -28

Using our rule for adding rational numbers, we conclude at once:
The sum of positive rational numbers is also positive.

Observe that our number 0 has the property that

for any integer n 0. Indeed, applying our test for the equality of two
fractions, we must verify that

0 1 =0en

and this is true because both sides are equal to 0.

For any rational number a, we have

O+a=a+ 0=a

This is easily seen using the analogous property for integers. Namely, write
a = m/n, where m, n are integers, and n 9 0. Then

7
7

and similarly on the other side.
Let a = m/n be a rational number, where m, n are integers and n 0.
Then we have
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For this reason, we shall write

By a previous remark, we also see that

m_ m
n —

This shows how a minus sign can be moved around the various terms of a
fraction without changing the value of the fraction.
A rational number which can be written as a fraction
m_—m_ m
n n —n

where m, n are positive integers will be called negative. For example, the

number
3 -3 _ 3

-5 5 5
is negative. Using the definition of addition of rational numbers, you can

easily verify for yourselves that a sum of negative rational numbers is
negative.

Addition of rational numbers satisfies the properties of commutativity and
associativity.

Just as we did for integers, the above statement will be accepted without
proof. It is in fact a general property of much more general numbers, which
will be restated again for these numbers in the next section.

In 82, we proved a number of properties of addition using only commutativity
and associativity, together with the rules

0+ a=a and a+ (—a) =0

These properties therefore remain valid for rational numbers. Similarly, all
the exercises of 82 remain valid for rational numbers.

This remark will again be made later whenever we meet a similar situation.
For instance, we see as before that

ifa+ b=20,thenb = —a.
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We just add —a to both sides of the equation a + 6 = 0. In words, we can
say: To test whether a given rational number is equal to minus another, all
we need to verify is that the sum of the numbers is equal to O.

We shall now give the formula for multiplication of rational numbers.
This formula is:

mr

ns

m
n

mwi=

Thus to take the product of two rational numbers, we multiply their numer-
ators and multiply their denominators. More precisely, the numerator of
the product is the product of the numerators, and the denominator of the
product is the product of the denominators.

Example. We have

37 =21

5'8 40
Also,

2 11 = 22

7 16 112

We can write this last fraction in simpler form, namely

2 11 2.11
7'16 % 7 e2 =8’

We can then cancel 2 and get

2 11 =1
716 56

This shows that sometimes it is best not to carry out a multiplication before
looking at the possibility of cancellations.

Example. We have

4 7 (-4)7 -28 28
5 1-3 ” 5(_3) ” _15 ” 15(

Example. Let a = m/n be a rational number expressed as a quotient of
integers. Then
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Similarly,
3 Mmoo
nnn n3

In general, for any positive integer k, we have

mK

\n) ril
Example. We have

(if - h-§

81
525"

Also,

Example. A chemical substance disintegrates in such a way that it gets
halved every 10 min. If there are 20 grams (g) of the substance present at a
given time, how much will be left after 50 min?

This is easily done. At the end of 10 min, we have - <20 g left. At the

1
end of 20 min, we have 2—2020 g left, and so on; at the end of 50 min, we have

grams left. This is a correct answer. If you want to put the fraction in lowest
form, you may do so, and then you get the answer in the form f g. You can
also put it in approximate decimals, which we don’t do here.

We ask: Is there a positive rational number a whose square is 2? The
answer is at first not obvious. Such a number would be a square root of 2.
Note that 12 = 1«1 = 1 and 22 = 4. Thus the square of 1 is smaller than
2 and the square of 2 is bigger than 2. Any positive square root of 2 will
therefore lie between 1 and 2 if it exists. We could experiment with various
decimals to see whether they yield a square root of 2. For instance, let us
try the decimal just in the middle between 1 and 2. We have

(1.5)2 = 2.25,

which is bigger than 2. Thus 1.5 is not a square root of 2, and is too big to
be one.
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We could try more systematically, namely:

(1.1)2 = 1.21 (too small),
(1.2)2 = 1.44 (too small),
(2.3)2 = 1.69 (too small),
(1.4)2 = 1.96 (too small but coming closer).

We know that 1.5 is too big, and hence we must go to the next decimal
place to try out further.

(1.41)2 = 1.9881 (too small),
(1.42)2 = 2.0164 (too big).

Thus we must go to the next decimal place for further experimentation.
We try successively (1.411)2, (1.412)2, (1.413)2, (1.414)2 and find that they
are too small. Computing (1.415)2 we see that it is too big. We could keep
on going like this. There are several things to be said about our procedure.

(1) It is very systematic, and could be programmed on a computer.

(2) It gives us increasingly good approximations to a square root of 2,
namely it gives us rational numbers whose squares come closer and closer
to 2.

However, to find a rational number whose square is 2, the' procedure
is a bummer because of the following theorem.

Theorem 4. There is no positive rational humber whose square is 2.

Proof. Suppose that such a rational number exists. We can write it in
lowest form m/n by Theorem 3. In particular, not both mand n can be even.
We have

Consequently, we obtain
m2 = 2n2,

and therefore m2is even. By the Corollary of Theorem 2 of 84, we conclude
that m must be even, and we can therefore write

m = 2k
for some positive integer k. Thus we obtain

m2 = (2K)2 = 4k2 = 2n2
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We can cancel 2 from both sides of the equation

4k2 = 2n2,

and obtain
n2 = 2k2

This means that n2is even, and as before, we conclude that n itself must be
even. Thus from our original assumption that (m/n)2 = 2 and m/n is in
lowest form, we have obtained the impossible fact that both m, n are even.
This means that our original assumption (m/n)2 = 2 cannot be true, and
concludes the proof of our theorem.

A number which is not rational is called irrational. From Theorem 4,
we see that if a positive number a exists such that a2 = 2, then a must be
irrational. We shall discuss this further in the next section dealing with
real numbers in general.

Multiplication of rational numbers satisfies the same basic rules as
multiplication of integers. We state these once more:

For any rational number a we have la = a and OCa = 0. Furthermore,
multiplication is associative, commutative, and distributive with respect to
addition.

As before, we assume these as properties of numbers. Moreover, we have
the same remark for multiplication that we did for addition. All the properties
of 83 which were proved using only the basic ones are therefore also valid
for rational numbers. Thus the formulas which we had, like

@+ b)2=a2+ 2ab + b2
are now seen to be valid for rational numbers as well. All the exercises at the
end of §3 are valid for rational numbers.
Example. Solve for a in the equation
3a- 1=71.
We add 1 to both sides of the equation, and thus obtain
3a=7+1=8

We then divide by 3 and get
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Example. Solve for x in the equation
2(x - 3) =17
To do this, we use distributivity first, and get the equivalent equation
2Xx —6 = 7.

Next we find

whence

Of course we could have given other arguments to find the answer. For
instance, we could first get

whence

* =\ + 3-

This is a perfectly correct answer. However, we can also give the answer in
fraction form. We write 3 = §, and find that

Example. Solve for x in the equation

3Jy 1 + 4 -~
We multiply both sides of the equation by 2 and obtain
3s - 7+ 8 = Ax
We then add —3jcto both sides, to get
1=4x —3x = x

This solves our problem.
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EXERCISES

1. Solve for a in the following equations.

n o 3 wn 3a " . -5a 3
4 bT - -7 o— -8

2. Solve for x in the following equations.
a) 3c—5=0 by 2x+ 6 =1 c) —x =2

3. Put the following fractions in lowest form.

~ 10 M 3 \ 3° 50
a) 26 b) 9 0 26 d) 16
, 45 62 23 .. 16
6) 9 ) A g) 46 } 40

4. Let a = m/n be a rational number expressed as a quotient of integers
m, nwith m Oand n 0. Show that there is a rational nhumber b
such that ab = ba = 1

5. Solve for x in the following equations.
a 2x —7 =21 b) 32* - 5) =7 c) (4* - 1)2:}

d —4x + 3 = 5x g) 3x —2 = —bx+ 8 f)3x+ 2= —3x+ 4

g P+ 1= 3 - ¥+1-s ) R34 ax = 10

6. Solve for x in the following equations.

a)2*-|

Hax 3

|]+1 b |*+5=-7x c) =] *=3x-1

0. & ey 4L A3X) 0. p f) 2- % 97*

7. Let rebe a positive integer. By n factorial, written n\, we mean the
product

1 -2 -3 ---n
of the first n positive integers. For instance,

2! = 2,
31 =2-3 =6
41 = 2 «3 «4 = 24,

a) Find the value of 5!, 6!, 7!, and 8..
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b) Define 0! = 1. Define the binomial coefficient

m\ _ ml

n) ni(m —n\
for any natural numbers m, n such that n lies between 0 and m.
Compute the binomial coefficients

can be selected out of m things. You may want to look at the discus-
sion of Chapter 16, §1 at this time to see why this is so.

c) Show that /I N\
r) <. m)e

d) Show that if n is a positive integer at most equal to m, then

. 1 7%.
()+(,-O'C™ O
8. Prove that there is no positive rational number a such that a3 = 2.

9. Prove that there is no positive rational number a such that a4 = 2.

10. Prove that there is no positive rational number a such that a2 =3. You
may assume that a positive integer can be written in one of the forms
3k9Sk + 1, 3k + 2 for some integer k. Prove that if the square of a
positive integer is divisible by 3, then so is the integer. Then use a similar
proof as for V2.

11. a) Find a positive rational number, expressed as a decimal, whose
square approximates 2 up to 3 decimals.

b) Same question, but with 4 decimals accuracy instead.

12. a) Find a positive rational number, expressed as a decimal, whose
square approximates 3 up to 2 decimals.

b) Same question but with 3 decimals instead.

13. Find a positive rational number, expressed as a decimal, whose square
approximates 5 up to

a) 2 decimals, b) 3 decimals.
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14.

15.

16.

17.

18.

19.

20.

21.
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Find a positive rational number whose cube approximates 2 up to

a) 2 decimals, b) 3 decimals.
Find a positive rational number whose cube approximates 3 to
a) 2 decimals, b) 3 decimals.

A chemical substance decomposes in such a way that it halves every 3
min. If there are 6 grams (g) of the substance present at the beginning,
how much will be left

a) after 3 min? b) after 27 min? c) after 36 min?

A chemical substance reacts in such a way that one third of the remaining
substances decomposes every 15 min. If there are 15 g of the substance
present at the beginning, how much will be left

a) after 30 min? b) after 45 min? c) after 165 min?

A substance reacts in water in such a way that one-fourth of the un-
dissolved part dissolves every 10 min. If you put 25 g of the substance
in water at a given time, how much will be left after

a) 10 min? b) 30 min? ¢) 50 min?

You are testing the effect of a noxious substance on bacteria. Every 10
min, one-tenth of the bacteria which are still alive are killed. If the
population of bacteria starts with 106, how many bacteria are left after

a) 10 min? b) 30 min? c) 50 min?

d) Within which period of 10 min will half the bacteria be killed?

e) Within which period of 10 min will 70% of the bacteria be killed?

f) Within which period of 10 min will 80% of the bacteria be killed?
[Note: If one-tenth of those alive are killed, then nine-tenths remain.]

A chemical pollutant is being emptied in a lake with 50,000 fishes. Every
month, one-third of the fish still alive die from this pollutant. How many
fish will be alive after

a) 1 month? b) 2 months?

¢) 4 months? d) 6 months?

(Give your answer to the nearest 100.)

e) What is the first month when more than half the fish will be dead?
f) During which month will 80% of the fish be dead?

[Note: If one-third die, then two thirds remain.]

Every 10 years the population of a city is five-fourths of what it was 10
years before. How many years does it take

a) before the population doubles? b) before it triples?
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86. MULTIPLICATIVE INVERSES

Rational numbers satisfy one property which is not satisfied by integers,
namely:

If a is a rational number 0, then there exists a rational number, denoted
by a“ 1, such that

a~la = aa“1= 1
Indeed, if a = m/n where m, n are integers 0, then a~lI = n/m because

mn _mn_ "
nm mn

We call a-1 the multiplicative inverse of a.

Example. The multiplicative inverse of J is f, or simply 2, because

The multiplicative inverse of § is 8. The multiplicative inverse of —-is —
Observe that if a and b are rational numbers such that
ab = 1,

then
b=a“1

Proof. We multiply both sides of the relation ab = 1 by a-1, and get
a~lab = a-1 <1 = a“1
Using associativity on the left, we find
a~lab = 16 = 6,
so that we do find 6 = a“1as desired.
From the existence of an inverse for non-zero rational numbers, we deduce:
Ifab = 0, thena = 0or 6 = 0.

Proof. Suppose a 0. Multiply both sides of the equation ab = 0 by
a“l We get:
a~lab = 0a“1= 0.

On the other hand, a~lab = 16 = 6, so that we find 6 = 0, as desired.
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We shall use the same notation as for quotients of integers in taking
quotients of rational numbers. We write

5 or a/b instead of b la or ab x

Example. Leta = fandb =, Then

3/4 =3/5\~1=37=21
5/7 ~ 4\7/ "4 5" 20

Example. We have

2 A 3
3/2x4 33 9

2+ 1 /6 —4)_1

Our rule for cross-multiplication which applied to quotients of integers
applies as well when we want to cross-multiply rational numbers. We state
it, and prove it using only the basic properties of addition, multiplication,
and inverses.

Cross-multiplication. Leta, 6, ¢, d be rational numbers, and assume that
b"0andd O

Ifg = -C9 then ad = 6c.
a
If ad = be, then"éo—— -

Proof. Assume that a/b = c¢/d. We can rewrite this relation in the form
b~la = d-~lc.
Multiply both sides by db (which is the same as bd). We obtain

dbb~la = bdd-~lc,

so that
da = be

because 66-1a = la = a, and similarly, dd~le = Ic = c.
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Conversely, assume that ad = be. Multiply both sides by b~Id~I, which
is equal to d~Ib~l. We find:

add~Ib~l = d-Ilb~lbc,
whence
ab~l = d~lc.

This means that a/b = c/d, as desired.

Example. By cross-multiplying, we have

if and only if
3 =234 —1) = 2jc —2,

which is equivalent to
3+ 2 = 2.

Thus we can solve for x, and get x = 8.

Example. By cross-multiplying we have

4+ x

jx 70

if and only if

Again by cross-multiplication this is equivalent to

2(4 + x) = b5s,
or
8 + 2x = 5c

Subtracting 2jc from both sides of this equation, we solve for x, and get

8

Cancellation lawfor multiplication. Let a be a rational number 0.

Ifab = ac, thenb = c.



[1, §6] MULTIPLICATIVE INVERSES 45

Proof. Multiply both sides of the equation ab = ac by a“1 We get
a~lab = a_lac,

whence b = c.

We also have a cancellation law similar to that for quotients of integers.
If a, b, c, dare rational numbersanda 0,c 0, then

ab b
ac ¢

This can be verified, for instance, by cross-multiplication, because we have
abc = bac

(using commutativity and associativity).
Thus we can operate with fractions formed with rational numbers much
as we could operate with fractions formed with integers.

Example. If a/b and c/d are two quotients of rational numbers (and b 0,
d 0), then we can put them over a “common denominator” and write

ad c be
bd9 d~ bd

a
b
Example. If x, y, b are rational numbers and 6”70, then we can add

quotients in a manner similar to the addition for quotients of integers,
namely

Il +1 -b-'"x + b-'y

= b~lI(x+y) by distributivity

YN ~ ky definition.

Combining this with the “common denominator” procedure of the preceding
example, we find

This formula is entirely analogous to the formula expressing the sum of two
rational numbers.
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Example. Show that

1 1 = 2
X —y X+y x2-y2

To do this, we add the two quotients on the left by our general formula
which we just derived, and get:

1I*+y)+ 1(*-y) =x+y+x-y= 2
X —=y)(Xx +y) X2 —y?2 X2-y2’

as was to be shown.

Remark. In the preceding example, the quotients I/(x —y) and I/(x + )
make no sense if x —y = 0or x + y = 0. In such instances, we assume
tacitly that x andy are suchthat x —y Oand x + y j* 0. In the sequel
we shall sometimes omit the explicit mention of such conditions if there is
no danger of confusion.

Example. Solve for x in the equation

Sx+ 1
2X~—b =

We cross-multiply. For 2x —5 j* 0, i.e. x * f, we find the equivalent
equation
Sx+ 1 =4(2* - 5 = Sx- 20.
Hence
8 - 3x =1- (-20) =1+ 20 = 21

This yields finally
5x = 21,

whence
21

Example. We give an example from the physical world. Suppose that an
object is moving along a straight line at constant speed. Let s denote the
speed, let d denote the distance traveled by the object, and let t denote the
time taken to travel the distance d. Then in physics one verifies the formula

d = st
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Of course, we must select units of time and distance before we can associate
numbers with these. For instance, suppose that the distance traveled is 5 mi,
and the time taken is \ hr. Then the speed is

s = d/t = = 2-5 mi/hr = 10 mi/hr.

N
2nr

Example. A person takes a trip and drives 8 hr, a distance of 400 mi. His
average speed is 60 mph on the freeway, and 30 mph when he drives through
a town. How long did the person drive through towns during his trip?

To solve this, let x be the length of time the person drives through towns.
Then the length of time the person is on the freeway is 8 —x. The distance
driven through towns is therefore equal to 30x, and the distance driven on
freeways is 60(8 — x). Since the total distance driven is 400 mi, we have

30x + 60(8 - x) = 400.
This is equivalent to the equations
30x + 480 - 60s = 400
and
80 = 30x.
Thus we find
80 8
* w30 s 3

Hence the person spent § hrs driving through towns.

Example. The radiator of a car contains 8 gt of liquid, consisting of water
and 40% antifreeze. How much should be drained and replaced by antifreeze
if the resultant mixture should have 90% antifreeze?

Let x be the number of quarts which must be drained. After draining this
amount, we are left with (8 —x) qt of liquid, of which 40% is antifreeze.
Thus we are left with

40
ioo(8-*)qt

of antifreeze. Since we now add x gt of antifreeze, we see that x satisfies
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From this we can solve for x, transforming this equation into equivalent
equations as follows:

40 . 40 90
x + 100 100 - 100 -
which amounts to
60 50
100 x 100 -
whence
400 20
60 " 3

This is a correct answer, but if you insist on putting the fraction in lowest
form, then we can say that 6§ qt should be replaced by antifreeze.

Remark. The above examples, and the exercises, can also be worked using
two unknowns. Cf. the end of Chapter 2, §1.

EXERCISES

1. Solve for x in the following equations.

ei??x#g:g’tz

-2-5x 4
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. Prove the following relations. It is assumed that all values of x and y

which occur are such that the denominators in the indicated fractions
are not equal to 0.

_1 1 g2y Bol e we X2
aj<x+'y Xy x3y3 b) g T 1 F x#x
S 1oL, 1,2,,3

xn — 1 ) )
d) g =xn=1+ xn-2+ eee+ x + 1. [Hint: Cross-multiply and

cancel as much as possible.]

. Prove the following relations.

4 x

Q) x+y T ax —y  4x2 —y2

b 2x Sx + 1 x2 — 14* —5
)x+5 2x + 1 2x2+ Ux + 5
. 1 i 2X
O x+ 8 * x—3 x2—0y2
1 X =X+ vy + 3x2- 2xy
3x — 2y X +y 3x2+ xy —2y2

For more exercises of this type, see Chapter 13, 82

. Prove the following relations.

VANIPAN - * *
a)x—y 2+ *y + y2
b) X _y =x3+ x + xy2+ y3
c) Let
1- 12 , 21
*oor+ox “d y-rr?

Show that x2 + y2 = 1.

. Prove the following relations.
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10.

11.
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b) -6t~ = x4- xa+ x2- x+ 1
X + 1
¢) If nis an odd integer, prove that

= S 1 - Xn 2+ XN=3 - 4+ 1L

[Hint: Cross-multiply.]

. Assume that a particle moving with uniform speed on a straight line

travels a distance of f ft at a speed of § ft/sec. What time did it take the
particle to do that?

If a solid has uniform density d, occupies a volume v, and has mass m,
then we have the formula

m = vd.
Find the density if
a) m =yolbandv = §in3 b) m = 61Iband v = ~in3,
c) Find the volume if the mass is 15 Ib and the density is § Ib/in3.

. Let F denote temperature in degrees Fahrenheit, and C the temperature

in degrees centigrade. Then F and C are related by the formula
C = |(F - 32).

Find C when F is
a) 32, b) 50, c) 99, d) 100, e) -40.

. Let F and C be as in Exercise 8. Find F when C is:

a) 0, by -10, c) -40, d) 37, e) 40, f) 100.

In electricity theory, one denotes the current by /, the resistance by R,
and the voltage by E. These are related by the formula

E = IR

(with appropriate units). Find the resistance when the voltage and
current are:

a) E = 10,1 = 3; b) E = 220, 1 = 10.
A solution contains 35% alcohol and 65% water. If you start with

12 cm3 (cubic centimeters) of solution, how much water must be added
to make the percentage of alcohol equal to

a) 20%? b) 10%? c) 5%2?
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13.

14.

15.

16.
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A plane travels 3,000 mi in 4 hr. When the wind is favorable, the plane
averages 900 mph. When the wind is unfavorable, the plane averages
500 mph. During how many hours was the wind favorable?

Tickets for a performance sell at $5.00 and $2.00. The total amount
collected was $4,100, and there are 1,300 tickets in all. How many
tickets of each price were sold?

A salt solution contains 10% salt and weighs 80 g. How much pure
water must be added so that the percentage of salt drops to

a) 4%? b) 6%? c) 8%°?

How many quarts of water must you add to 6 gt of pure alcohol to get a
mixture containing

a) 25% alcohol? b) 20% alcohol? ¢) 15% alcohol?

A boat travels a distance of 500 mi, along two rivers, for 50 hr. The
current goes in the same direction as the boat along one river, and then
the boat averages 20 mph. The current goes in the opposite direction

along the other river, and then the boat averages 8 mph. During how
many hours was the boat on the first river?

. How much water must evaporate from a salt solution weighing 2 Ib and

containing 25% salt, if the remaining mixture must contain
a) 40% salt? b) 60% salt?

. The radiator of a car can contain 10 gal of liquid. If it is half full with a

mixture having 60% antifreeze and 40% water, how much more water
must be added so that the resulting mixture has only

a) 40% antifreeze? b) 10% antifreeze?
Will it fit in the radiator?





