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 الفصل السابع
 ةالكمی اتالإحصاء

 :مقدمة
تفید الدراسة الكلاسیكیة بإمكانیة تحدید موضع الجسیم وكمیة حركتھ بنفس الوقت وبدقة تامة. في حین لایكون ھذا الأمر 

 متاحاً بالنسبة للأجسام الكمیة (الكوانتیة)، نظراً لخضوعھا لمبدأ ھایزنبرغ في الشك (عدم التحدید).
 Ph=λك موجة مصاحبة یتحدد طولھا من علاقة دي برولي ولكل جسیم متحر

ما  ،λ>>aVxوتكون المسافة الوسطى بینھا ). تكون الأمواج المصاحبة متباعدة (غیر متداخلةالحالة الكلاسیكیة في 
تكون الأمواج المصاحبة متقاربة (متداخلة). فصیلات الدقیقة لكل منھا على حدة. وفي الحالة الكمیة یسمح بمعرفة الت

، ما لا یسمح بمعرفة التفصیلات الدقیقة لكل منھا على حدة. حیث تشوش كل λ<<aVxوتكون المسافة الوسطى بینھا 
 .(  )كما ھو موضح بالشكل  ،موجة على مواصفات الأخرى

  حدود تطبیق الدراسة الكلاسیكیة:لمعرفة 
 : إمكانیة تحقیقھا لشرط الحالة الكلاسیكیةنبحث في 

                         (1)                   λ>>aVx 
  كلاسیكي،جسیم  Nمكونة من لذا نفرض جملة متوازنة 

 .Tعند درجة الحرارة  V  وتشغل حجماً قدره
 الأمواج المصاحبة لجسیماتھا، یحدث تداخل بین  وحیث أنھ لا

 . aVxفإننا نفرض حجماً خاصاً لكل جسیم على شكل مكعب طول ضلعھ 
 بدلالة معطیات الجملة بتطبیق العلاقة التالیة:  aVxنوجد قیمة  -

 حجم المكعب Xحجم الجملة = عدد المكعبات                                    
3و حجم المكعب =   Nات = وبما أن عدد المكعب  

aVx:وبالتعویض، نجد . 
                               (2)                      313 )( NVxaV =          ⇒= 3

aVxNV 
 . Ph=λمن علاقة دي برولي  λنوجد قیمة  -
 المثالیة (باعتبار أن طاقة الجسیم ھي طاقة حركیة) معطیات النظریة الحركیة للغازات من Pونوجد   

                   (3)          mKTh 3=λ    ⇒=⇒== mKTPKTmP 32322ε 
 فنجد: (1) شرط الحالة الكلاسیكیة في (3)و  (2)نعوض عن قیمتي 
                                                            mKThNV 3)( 31 >> 

تحقق التراجح مقترن بصغر عدد علاقة التراجح. و إمكانیة دراسة الجملة كلاسیكیاً إذا تحققت تشیر العبارة الناتجة إلى
 تكون صغیرة.  VN أن كثافة الغاز الكلاسیكي یعني وھذاصغیر جدا).ً  Nالجسیمات (

 كبیر جدا)، وبالتالي كثافة عالیة. Nما (نستنتج مما سبق أن الجملة تدرس كمیاً عند
  :العامة للجسیمات الكمیة الصفات

),,,( موجتھا، ومكممة الطاقة والعزم الحركي، وتخضع لمبدأ ھایزنبرغ في الشك، وطول غیر متمایزة Smn ψ  المصاحبة
 Ph=λولي دي بر یحقق علاقة

 
 :)E-B( آینشتین -إحصاء بوزه  -۱

، وتشمل: الفوتونات (جسیمات الطاقة غیر متمایزة جسیمات كمیةوھي  .البوزوناتیدرس ھذا الإحصاء  مقدمة:
بعض ووالدیوترون، وجسیمات ألفا، الضوئیة)، والفونونات (جسیمات طاقة المرونة الناتجة عن الحركة الاھتزازیة)، 

 بالمواصفات الخاصة التالیة: البوزوناتتتمتع  ، وغیرھا.πالمیزونات مثل المیزون 
;3,2,1,0.....,. بالشكل إما صفر أو عدد صحیح من ) Sلھا عزم اندفاع (سبین  -۱ == nnS . 
  البوزونات،من عدد كبیر على التحلل الواحدة أن تحوي  یمكن لدرجة( لا تخضع لمبدأ باولي في الاستبعاد -۲

Smnالمعروفة:  الكمیة الأعدادالمتماثلة      ,,, .( 
),,,(تابع موجة دي برولي المصاحبة للبوزون  -۳ Smn ψ .متناظر 
 غیر متفاعلة مع بعضھا البعض. -٤

xaV   حالة كمیة 

λ   

xaV   یةحالة كلاسیك 

 (  )شكل  
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PCEبالعلاقة:  Eالطاقة ب Pیرتبط زخمھا  -٥ = 
||λπ2، حیث kC=ω. جمیعھا تحقق علاقة التشتت -٦ =k


 العدد الموجي (القیمة المطلقة لمتجھة الانتشار). 

 
 :)E-B( آینشتین -بوزه الوزن الإحصائي لتوزع عبارة 

. تحوي igسویة طاقة متحللة، ودرجة تحلل كلٍ منھا iε، موزعة على بوزون Nنفرض جملة معزولة مكونة من 
 .(  )(ندعوه رقم انشغال السویة). كما ھو موضح بالشكل  بوزون iNالسویة الواحدة على 

=∑یجري التوزع بحیث یتحقق قانوني انحفاظ عدد الجسیمات 
i

iNN  وطاقتھا i
i

iNU ε∑= 

 الموافقة للحالة الماكرویة عالتوزلإیجاد عدد طرق 
                        ),,.......,.......,,( 21 Mi NNNN 

 :  مثلاً  iسویة ال من أجلبدایةً: 
)1(، یفصل بینھا (حجرة) یةخل igعلى تحوي نلاحظ أنھا  −ig حاجز. 

 بوزون  iNتوزیع ، الناتج عن wالمیكروي حالات التوزععدد فیكون 
  .ات والحواجزبوزونعدد التبادیل المختلفة بین الل اً مساوی ،یةخل igعلى 

 كما یلي:مجموع المتبادلات إلى جداءاتھا.  العدد یساوي العلاقة:حسب 
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]ومن أجل كافة السویات  ]Mi  بالشكل: مساویاً لمجموع جداءاتھا التوزع المیكرويحالات عدد یصبح  ∋2,1......,
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 مقدار عدیم البعد لأنھ یعبر عن عدد. Wمن الواضح أن الوزن الإحصائي 
ھي الحالة الماكرویة الموافقة لوزن إحصائي أعظمي  حالة التوازن:

max
EBW −. 

oεεین للطاقةسویتعلى  ، مكونة من ثلاث بوزونات. موزعةجملة معزولة مثال: oεεو   1= 22 = ، 
21 متحللتین بالشكل:         =g  12و =g .:والمطلوب 

  أوجد حالات التوزع الماكروي الإجمالي، وطاقة كلٍ منھا. -۱
 واستنتج حالة التوازن. (مع التمثیل). توزع ماكرويأوجد الوزن الإحصائي لكل حالة  -۲

4:           حالات التوزع الماكروي الإجماليعدد  -۱الحل: 
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 وطاقاتھا حالات التوزع الماكروي الإجمالي           
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∏بتطبیق  ماكرویة (مع التمثیل).ال تحالاة للن الإحصائیاوزالأ -۲      
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4maxبما أن الوزن الإحصائي الأعظمي           =W توازن ، فتكون حالة)0,3( ویةالماكر یوافق الحالة  
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  :)E-B( آینشتین -بوزه توزع ، أي الأكثر احتمالاً)( السویات في الحالة المتوازنة نشغالم اارقعبارة أ
∏. المعطاة بالعلاقة:   (B-E)من عبارة الوزن الإحصائي لتوزع  −

−+
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كبیرین، لذا یھُمل الواحد في  igودرجة تحلل سویات الطاقة iNالجسیمات ھي بوزونات (كمیة) فیكون عددھا وحیث أن 

∏وتصبح عبارة الوزن الإحصائي بالشكل التالي:   (B-E)توزع  +
≈−
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)(نوجد بدایةً  EBWLn )(ثم نوجد تفاضلھ − EBWLnd  الذي نعوضھ في عبارة شرط الحالة الأكثر احتمالاً التالي: −
                                       (1)                               0)( =++− dUdNWLnd EB βα 

                                        [ ]∑∏ −−+=
+

≈−
i

iiii
i ii

ii
EB gLnNLngNLn

gN
gNLnWLn !!!)(

!!
!)()( 

xLnxxLnلـ ستیرلنغ    ثانيتقریب الالوباستخدام   نجد: !≈
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EBWبما أن   igالتي درجة تحللھا iالموزعة على السویة  iNوحیث أننا نبحث عن عدد الجسیمات igو iNتابع لكلٍ من −
 ثابتة. فإننا نجد بمفاضلة الطرفین:
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 :نجد: مع الأخذ بعین الاعتبار أن (1)بالتعویض في 
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],[نات التي تملك طاقة في المجال بوزوال یصبح عددوفي الحالة المستمرة  εεε d+ آینشتین: - وفقاً لتوزع بوزه 
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  :المفتوحةوالتوابع الترمودینامیكیة في الجمل  الكمون الكیمیائي

cteVTالممیزة بدرجة حرارة وحجم ثابتبن المفتوحة  ةیمكن النظر إلى الجمل تتبادل مع الوسط الخارجي و ),(=
باعتبارھا جمل ثابتة عدد الجسیمات لحظیاً. لأن العدد اللحظي للجسیمات الداخلة إلى الجملة یساوي عدد الجسیمات، 

 . cte=µثابتة  ، ولكلٍ منھا طاقة Nعدد اللحظي للجسیمات المتبادلة ھو فإذا فرضنا ال الخارجة منھا.
 عندئذٍ نجد من المبدأ الثاني في الترمودینامیك أن التغیر في الطاقة الداخلیة للجملة سیزداد بمقدار

                                                       dNdNdNNd µµµµ =+=
0

)(  

 :تصبح عبارة الطاقة الداخلیة في صیغتھا التفاضلیة بالشكل التالي الطاقة الداخلیة:
                                                            dNdSTdNdVPdSTdU µµ +=+−=

0

 

 ویمكن كتابة العبارة السابقة بالشكل:
                                                                 NVPSTU µ+−= 
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STUFنجدھا من العبارة المعروفة  الطاقة الحرة:  بقیمتھا نجد: Uوبالتعویض عن  =−
                                     VPNSTNVPSTF −=−+−= µµ 

VPFGنجدھا من العبارة المعروفة  طاقة جیبس:  بقیمتھا نجد: Fض عن وبالتعوی =+
                                              NVPVPNG µµ =+−= 

 الكمون الكیمیائي للجملة نظراً لارتباطھ بعدد الجسیمات المتبادلة (المولات). µیدعى 
  µ=Gومن أجل جسیم واحد نحصل على كمون جیبس الترمودینامیكي 

dNdSTdUنجدھا من عبارة الطاقة الداخلیة:  الأنتروبیة: µ+= 
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KdSWdLnWLnKSمن قانون بولتزمان نجد:  مضاریب لاغرانج: =⇒= 
++=0 عبارة شرط الحالة الأكثر احتمالاً  فيبالتعویض  dUdNWdLn βα :نجد 

                                                                     0=++ dUKdNKdS βα 
                                                    (**)             dNKdUKdS αβ −−= 

 نجد المضاریب: (**)و  (*)بقة العبارتین بمطا

                                                             
KTKT
1

−=℘= βµα 

 
  :مشغولیة درجة التحلل

iiigنعرف مشغولیة درجة التحلل بالصیغة  gNN =)(ε وباعتبار ،KTµα  نجد: KT1−=βو  =
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)(1ولكي تتحقق المشغولیة یجب أن یكون  ≥− KTie µεأن: لنیبري. وكما ھو معلوم من خواص التابع ا 
  0;11 ><℘> − xee xx في الحالة التي یكون ى حیث لایعود للمشغولیة معن سالبالس الأ. ومنعاً من ظھور)

iεµفیھا  =−=<0 موجبة αمضروب لاغرانج ل فتصبح القیمة المطلقة. µ>0) نفرض < µβµα KT  
 ونكتب المشغولیة بالشكل:

                                             1
1

1
1

−
=

−
== −− αεβµε eeeeg

NN
ii KTKT

i

i
g 

 باختلاف درجات الحرارة.  gN نناقش عبارة المشغولیة
  :عند درجات الحرارة العالیة -

  تصبح قیمةوعلیھ  µ>>KTتكون الطاقة الحراریة أكبر بكثیر من الكمون الكیمیائي عند الدرجات العالیة للحرارة    
 : مساویة للواحد αeالتابع النیبري   

                          ( ) 11111 01)( +≈<<− ≈⇒≤≈=== αµµµα eeeeee KTKTKT  
 µ≈0، وكأننا اعتبرنا αe→+1الیسار (متزایدة نحو الواحد)،  قیمة النیبري من الواحد من جھةأي تتقارب    
KTiiلمعامل بالنسبة ل أما    ee εεβ  وكما ھو معلوم تكتسب الجسیمات عند درجات الحرارة العالیة طاقات عالیة :  −=
  KTi >>ε 1المعامل یغدو و ،تتوضع في سویات الطاقة العلیاو>>KTie ε  بحیث یمكننا إھمال الواحد الموجود في 

11:  مقام عبارة المشغولیة التي تصبح بالشكل   
<<≈ KTg ie

N ε،  تبقى مما یعني أن مشغولیة سویات الطاقة العلیا 

 أدنى من مشغولیة السویات الدنیا.   
 :(عند الطاقات العالیة) بولتزمان) الكلاسیكي -آینشتین) الكمي إلى غاز (مكسویل  -تحول غاز (بوزه    
KTie<<1المعامل  عند الطاقات العالیة تكون قیمة    ε حیث یمكننا إھمال الواحد الموجود في مقام عبارة المشغولیة. 
 نكتب عبارة رقم الانشغال بالشكل:   
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 كما ھو  إلى غاز مكسویل الكلاسیكي B - Eویتحول في ھذه الحالة غاز    
 .(  )موضح في الشكل    
  :آینشتین -ة ، تكاثف بوزه لمنخفضعند درجات الحرارة ا -
 وخصوصاً في سویات الطاقة الدنیا،  معظمھا توضعیل الجملة جسیماتتنخفض طاقة  عند درجات الحرارة المنخفضة   

≈=1حیث درجة التحلل  في السویة الأرضیة    oi gg ،يالكل عددلویصبح عدد الجسیمات في ھذه السویة مساویاً تقریباً ل  
NNNN جسیمات الجملةل   

i
ioi ===  مشغولیتھا. الأمر الذي یعني زیادة  ،∑

10( ةذات طاقات صفری ھذه السویاتوبما أن     ≈⇔≈ KT
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ie εε،(  :نكتب عبارة المشغولیة بالشكل التالي 
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 احد من جھة الیمین (متناقصة نحو الواحد)، أي أن قیمة التابع النیبري تتقارب من الو   
  +→1αe.  0وھذا یعني أن≈µ ، ویصبح رقم انشغال السویة الأرضیة لانھائي∞→oN 
 إلا النذر الیسیر منھا تجمع في السویة الأرضیة جسیمات الجملة توتفسیر ذلك أن معظم    
 آینشتین "،  -یات الأعلى القریبة. تدعى ھذه الظاھرة " تكاثف بوزه وفتتوزع في الس   
 . تنبأ بھا آینشتین وھي خاصة ممیزة للبوزونات المثالیة. (  )كما ھو موضح في الشكل    
 .Fugacity) أو Absolute activity -تسمیة (الفعالیة المطلقة للغاز  αeتطلق على التابع النیبري    

  غیر موجودة في الطبیعة.محض خیال لأنھا اعتقد علماء الفیزیاء أن ھذه الظاھرة  ،ةعدولسنوات 
المكثفة من الحصول على الحالة  1995وبعد تقدم البحوث العلمیة في مجال التبرید بالآزوت السائل، تمكن الباحثون عام 

oتدعى الدرجة الحرجة للتكاثف داً من الصفر المطلق حرارة قریبة ج لغاز الروبیدیوم عند درجات
B kT 7103,1 −×= .

 (درجة حرارة آینشتین لتكاثف البوزونات).
  .میادینال كافة في الواسعة ھتطبیقاتنظراً لفي مجال الفیزیاء الذریة الأثر البالغ في تطور الأبحاث ھذا الإنجاز لوكان 

   ملاحظة:
BTTمن أجل  -  BTTنمیز في الغاز الذي تنخفض درجة حرارتھ دون درجة التكاثف  >  وجود طورین: >

 القریبة). العلیا(المتوضعة في السویات  ENالطور الغازي: ویتمثل بعدد محدود من البوزونات غیر المتكثفة  -۱
 للجملة شبھ معدومة. VCوالسعة الحراریة  Uلطاقة الداخلیة وتكون مساھمتھا في رفع ا          

Eo )المتكثفة(لبیة العظمى للبوزونات اغالطور المتكثف: ویمثل ال -۲ NNN  (المتوضعة في السویة الأرضیة).  =−
 oε=0للجملة لأن  VCو  Uوھي لا تسھم في رفع 

BTTأما من أجل  -  لأرضیة باتجاه السویات العلیا وبكثافات عالیة. أي تكون فتحدث ھجرة للبوزونات من السویة ا <
ENNمعظم البوزونات في الحالة المثارة أي:     للجملة. ، ویكون لھا إسھام في رفع الطاقة الداخلیة والسعة الحراریة≈
)(وتبقى نسبة ضئیلة من البوزونات في السویة الأرضیة    NNN Eo  .Uذات المساھمة المعدومة في رفع  >>≈

 ھامة: ریاضیة علاقات

∑   یعرف بالشكل التالي: :(Zeta Function)تابع زیتا 
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 ویأخذ القیم التالیة:
9/2 7/2 5/2 3/2 4 3 2 1 q 

1,055 1,127 1,341 2,612 082,1904 =π 1,202 645,162 =π ∞ )(qζ 

)()(;1     نتیجتھ المرتبطة بتابعي غاما وزیتا:ذو ال التكامل
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 :ةالیعوغیر المثارة عند درجات الحرارة ال العدد النسبي للبوزونات المثارة
BTT عند درجات الحرارة العالیة منھا ، وعدد قلیل جداً في الحالة المثارة ENالبالغ عددھا  تكون معظم البوزونات :<

oN  في السویة الأرضیة. أيoE NN oEو  << NNN ENNننا اعتبار أي یمك .=+ ≈ 
عبارة رقم الانشغال (في الحالة  نستخدم(الموزعة على سویات الطاقة فوق الأرضیة)  ENعدد البوزونات المثارة  لإیجاد

BTTلأنھ رقم صغیر جداً عند  oN، (بعد إھمال الأكثر احتمال) BTTفي حین لا یجوز إھمالھ عند  < ≤( 
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عنصر ب εg)( من علاقة درجة التحلل دةوالاستفا، αe−=1 واعتبار ،∫إلى التكامل ∑وبالانتقال من عبارة المجموع
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KTxلحل التكامل نفرض  ε= :فنجد 
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 :πبالتعویض في عبارة التكامل والضرب والقسمة على 
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 الموجودة أصلاً في السویة الأرضیة: oNفیكون عدد البوزونات غیر المثارة 
                                            (2)                         Eo NNN −= 

BTT ةمنخفضعند درجات الحرارة الأما  وتھبط جمیعھا لتستقر النسبة العظمى  ،: فیحدث تكاثف للبوزونات المثارة≥
فیھبط لیستقر في السویات الأعلى القریبة من  EN≈0إلا النذر الیسیر الذي نعتبره مھملاً  في السویة الأرضیة،منھا 

  .EN≈0معدوم شبھ ة المثارالبوزونات  عددالأرضیة، أي نعتبر 
oEo فھو حقیقةً الموجود في السویة الأرضیة الإجماليأما العدد  NNNN ≈+=. 

 :فنجد (1)، في Nبـ  EN، وعن BTبـ  Tنحصل على عبارة العدد الإجمالي للبوزونات المتكثفة بالتعویض عن 
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 فنجد: (3)على  (1)لمعرفة نسبة عدد البوزونات المثارة إلى العدد الكلي بدلالة درجة الحرارة نقسم 
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 (الموجودة أصلاً في السویة الأرضیة)  oNأما نسبة عدد البوزونات غیر المثارة 
 كما یلي: (2)في  (4)بدلالة درجة الحرارة فنجده بتعویض  Nإلى العدد الكلي 
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 . BTتتحول كافة الغازات الحقیقیة عند تبریدھا إلى الحالة السائلة، وذلك قبل بلوغھا درجة التكاثف  ملاحظة:
 والبقاء في الحالة الغازیة. عھایة منعاً من تمیمرتفعلذا یتم التبرید بتطبیق ضغوط 

 :BTدرجة الحرارة الحرجة 
 یبدأ عندھا التكاثف،  التي BTلمعرفة درجة الحرارة الحرجة 

 بالشكل التالي:  (3)یمكننا كتابة ، Vو   Nبدلالة 
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 تحت الضغط الجوي النظامي. علماً أن:He4مول واحد من غاز الھلیوم  احسب درجة حرارة تكاثف مثال:
       molAtomNN A

231002,6 Kgmmو  ==× pHe
2727 1065,61066,144 −− ×=××== ، 

33104,22وحجم المول         mVHe
SJh، وثابتة بلانك =×− 341063,6 okJK، وثابتة بولتزمان=×− 231038,1 −×= 

 الحل: نطبق العلاقة:
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oلا تتوافق القیمة المحسوبة مع القیمة التجریبیة البالغة 
B kT 21,4= 

 تحت الضغط الجوي النظامي. قارن النتیجة مع  2Hروجین احسب درجة حرارة تكاثف مول واحد من غاز الھید مثال:
oالقیمة التجریبیة البالغة         

B kT 14= 
 

 ) عند درجات حرارة مختلفة: E -Bخواص غاز البوزون المثالي (غاز 
 

 حساب الطاقة الداخلیة: -۱
BTTمن أجل  -  إلى غاز مكسویل الكلاسیكي B - Eفي في ھذه الحالة تحول غاز  وجدنا: <

max
)(

max
)( BMiEBi NN −− ≈ 

 بتي: وكون الطاقة الداخلیة لغاز البوزون مساویة للطاقة الداخلیة للغاز الكلاسیكي بحیث یتحقق قانون دیلونج تو  
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BTTمن أجل  -  . فتكون الطاقة الداخلیة للجملة:µ≈0نعتبر فیھ  یحصل تكاثف للبوزونات: ≥
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KTxلحل التكامل نفرض  ε= :فنجد 
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 :πبالتعویض في عبارة التكامل والضرب والقسمة على 
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 :   بالشكل التالي (3)من  V نوجد قیمة 
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 بقیمتھا نجد:    Vبالتعویض عن 
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cteTBوباعتبار  BTTمن أجل  25Tنلاحظ أن الطاقة الداخلیة متناسبة مع  (قیمة معلومة) =  ، بالشكل التالي:≥
                                                        2523

min 77,0 TTNKU B
−≈ 

 :حرارة النوعیة (السعة الحراریة)اب الحس -۲
BTTمن أجل  -  : تتوافق السعة الحراریة للبوزونات مع السعة الحراریة للغاز الكلاسیكي<
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 .Tغیر تابعة لدرجة الحرارة   maxVC تكونة نلاحظ ھنا أنھ عند الطاقات العالی   
BTTمن أجل  - ≤:  
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 .T ة الحرارة  تابعة لتغیرات درج minVCتكون عند الطاقات المنخفضة نلاحظ ھنا أنھ    
 ة)ختلف(السعة الحراریة لغاز البوزون عند الطاقات الم minVCتمثیل  (  )یوضح الشكل   
 BTعند الطاقات المنخفضة: أي في المجال الواقع بجوار  -  
okTعندما  VC=0نلاحظ أن        T  بازدیادوتزداد  ،=0

 لقیمتھا القصوى تصلإلى أن  23Tتناسب طرداً مع یبشكل     
   NKCV BTTعندما  =92,1 = . 
BTTعندما وعند الطاقات العالیة: أي  -     VCتنخفض قیمة  <

NKCVلتأخذ قیمة ثابتة T  ازدیادب     2
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 كما ھو الحال في  ،=

 . M-B الخاضع لتوزع الغاز الكلاسیكي    
 :الانتروبیةحساب  -۳
dUQیكون  في الترمودینامیك من المبدأ الأول    =δ  كلاوزیوس كما یلي: ونحسب الأنتروبیة من عبارة 
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 أن ضغط جملة البوزونات عند درجة ولیس مع الحجم، و 25Tتشیر العبارة الحاصلة إلى كون الضغط متناسب مع    
 . وبما أن الضغط ینتج عن كمیة الحركة المنقولة من الجسیمات المتحركة بسرعة معینة الصفر المطلق یصبح معدوم   
 معدومة عند درجة تكون إلى جدران الوعاء الذي یحویھا، نستنتج أن كمیة حركة غاز البوزون المثالي وبالتالي سرعتھ    
  .لمطلقالصفر ا  

min3تمرین: برھن أنھ عند الطاقات المنخفضة یكون 
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الحل: نوجد قیمة الطرف الأیمن 
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 فوتون نحصل على صیغة تابع تحاص طاقم الفوتونات بالشكل Nومن أجل 
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 درجة الحرارة الممیزة للحركات الاھتزازیة =

 
 لصلبة:الغاز الفونوني والسعة الحراریة في الأجسام ا

الفونونات ھي كمات طاقة الأمواج المرنة المنتشرة في الشبكة البلوریة للأجسام الصلبة، وتتسبب في اھتزاز ذرات 
الشبكة حول مواضع اتزانھا. وبالتالي فھي تشبھ فوتونات طاقة الأمواج الكھرطیسیة باعتبارھا مقادیر مكماة 

ωε nph -quasiنات من حیث أنھا تتبادل التأثیر فیما بینھا، لذا تدعى أشباه جسیمات ، لكنھا تختلف عن الفوتو=
particles. 

وبالتالي مضروب لاغرانج  µ=0تتفق الفونونات والفوتونات (باعتبارھما بوزونات) بأن الكمون الكیمیائي لھما معدوم  
 منھما في جملتھ غیر ثابت. ، لأن عدد كلٍ α=0كذلك الأمر 
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 المختلفة. لحل ھذا التناقض تقدم آینشتین بالتفسیر التالي:

 تفسیر آینشتین:
افترض آینشتین (اعتماداً على مفاھیم النظریة الكوانتیة) أن ذرات الشبكة البلوریة عبارة عن ھزازات مرونة توافقیة 

 مرنة بتردد ثابت. بسیطة، ومستقلة، وتھتز في الأبعاد الثلاثة حول مواضع اتزانھا فتصدر عنھا أمواج
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حیث افترضنا درجة حرارة آینشتین 
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من العلاقة    نحسب الطاقة الوسطى للفونون (من أجل درجة حریة واحدة)
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 الطاقة الوسطى للفونون بالتعویض في عبارة
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KNRوبثلاث درجات حریة لكل فونون  (مع اعتبار  ANنحسب الطاقة الداخلیة لمول واحد من الفونونات  A=نجد ( 
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  دراسة تابع مشغولیة درجة التحلل لكافة التوزعات:
 نستنتج مما سبق أن الصیغة العامة لكافة التوزعات تأخذ الشكل
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 :وتابع فیرمي للطاقة سویة فیرمي
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 ×eV12,3 ok31037 الغاز الإلكتروني في الصودیوم
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 الغاز الإلكتروني):( غاز الفیرمیون خواص

 :التوزع الحقیقي للإلكترونات على سویات الطاقة: (توزع كثافة سویات طاقة الإلكترونات) •
بالنسبة للطاقة:      عبارة توزع الجسیمات بدلالة سویة فیرمي نشتق طرفي 
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 مطلق.الصفر الدرجة عند  fε)0(بدلالة سویة فیرمي لى توزع الجسیمات تشیر العبارة الحاصلة إ
 توزع الجسیمات بدلالة fε)0(سویة فیرمي یمكننا كتابة  :وفي الحالة المعاكسة

                        (B)                       
322

)0( 8
3

2 







=

V
N

m
h

f π
ε 

 .للدلالة على تراص الجسیمات VNعلى الكثافة الحجمیة  سویة فیرمي تشیر العبارة الحاصلة على اعتماد
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 المرتفعة لإلكترونات البوتاسیوم (عند الصفر المطلق) إلى وجوب التعامل مع ھذا  Tfدرجة حرارة فیرمي  تشیر      
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 Application of Fermi – Dirac Statistics دیراك: –تطبیقات إحصاء فیرمي 
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 نحل التكامل بتحویلھ لتكامل غاما وذلك بفرض
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 Stellar evolution  تطور حیاة النجوم:
تولد النجوم عادةً عن تكاثف (تقلص) مادة السحابة البینجمیة (السدیم الغازي عالي الكثافة) المكونة من نسبة عالیة من 

ة من الھلیوم وبعض العناصر الأخرى. وبفعل محصلة قوى الجذب الثقالیة الھائلة یزداد التقلص الھیدروجین ونسبة قلیل
وترتفع قیم الضغط والحرارة في مركز السدیم إلى قیم قصوى، تسمح ببدء تفاعلات الاندماج النووي، التي یتحول فیھا 

H1الھیدروجین 
He4إلى ھلیوم مستقر  1

2 . 

                                         MeVQeHeH ++++→ +++ γν0
1

4
2

1
1 24 

 یعمل النجم كمفاعل نووي ناشر للطاقة (حرارة وإشعاع) ملیارات من السنین، إلى أن ینتھي وقوده (الھیدروجین).
ضغط انھیار النجم نحو داخلھ، وقوة  یستقر النجم في حالة من التوازن والثبات بفعل تساوي قوتي الثقالة التي تعمل على

  .فجارات النوویة الشدیدة في باطنھالناجمة عن الانالإشعاع 
یبدأ النجم بالانكماش على نفسھ بفعل تفوق قوى الثقالة على الھیدروجین وتفاعلات اندماج تنتھي نفاذ الھیدروجین  عند

 ة في ھذه المرحلة ضغط غاز فیرمي. ، یدعى ضغط الإشعاع المعاكس لضغط الجاذبیقوى الضغط الداخلي
على نفسھ ضغطاً ھائلاً وارتفاعاً كبیراً في درجة الحرارة، الأمر الذي یسمح ببدء تفاعلات اندماج  یسبب انھیار النجم

  كما یلي: لتكوین البیریلیوم ثم الكربونالھلیوم الجدیدة 
                                                           MeVQBeHe +→+

8
4

4
22    

                                                           MeVQCBeHe +→+ ++
12
6

8
4

4
2 

 شكملینالنجم  ویعود الھلیوم) یتكدس الكربون (كناتج تفاعل) في اللب، تفاعلات اندماج(انتھاء  الھلیوم نفاذ وقود عندو
 المعاكس. مع ضغط غاز فیرميالثقالة  ثانیة. ویتقابل ضغط على نفسھ وینھار

من كتلة الشمس) فإن الضغط الناتج یكون أقل من الضغط اللازم  ⊙M [4-0,4]إذا كانت كتلة النجم خفیفة (في المجال 
 لرفع درجة حرارة اللب إلى الدرجة اللازمة لبدء تفاعلات اندماج الكربون الجدیدة (التي تنتھي بتكوین عنصر الحدید)،

منحلة الكترونیاً ویتشكل في اللب جرم صغیر الحجم عالي الكثافة، مادتھ  الانھیار على نفسھالنجم الخفیف فیتابع 
(electron degenerate) ،القزم الأبیض یدعى  ،نوى الكربون فقط (ذرات كربون دون إلكترونات) أي مكونة من

(white dwarf)،  0,8كتلتھ M⊙ حد تشاندرا سیخار وھي أقل من Chandrasekhar limit 1,44 البالغ M⊙ . 
نفجار عنیف جداً یدعى النجم في ا يتشظ على الثقالة لضغط المعاكس وباستمرار الانھیار یعمل ضغط غاز فیرمي

 عالي الكثافة والحرارة. القزم الأبیضیبقى منھ سوى  ولا السوبرنوفا
ط الناتج یرفع درجة حرارة اللب إلى الدرجة ) فإن الضغ⊙M [10-4]أما إذا كانت كتلة النجم متوسطة (في المجال 

 جرم (القزم)الاللازمة لبدء تفاعلات اندماج الكربون الجدیدة (التي تنتھي بتكوین عنصر الحدید). وینتھي الأمر بتشكل 
 والنوى المكونة من النترونات فقط  ⊙M [3 - 1,44] ذي الكتلةنتروني ال

سحق المادة النترونیة وتقلیص  ) فإن الضغط الناتج یكون كبیراً جداً لدرجة⊙M 10تفوق أما إذا كانت كتلة النجم كبیرة (
 (الثقب الأسود).  Singularityحجمھا للصفر. فتتغیر الخواص الفیزیائیة المعھودة للمادة، وتدعى المادة الناتجة بالمتفرد 

ادة والطاقة، حتى أن الضوء لا یستطیع الفرار یتمتع الثقب بكثافة وقوة جذب ھائلتین، یستطیع بھما ابتلاع كافة أشكال الم
 .⊙M 3منھ. تقع كتلة الثقب الأسود وفقاً لتشاندرا سیخار فوق 
 نعود لحساب ضغط غاز فیرمي حیث نعتبر فرضیتین

 الأولى: السدیم النجمي كروي الشكل
 لب وعند الأطراف)ثابتة (تأخذ قیمة واحدة في ال ρالثانیة: كثافة مادة النجم 
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 سویات طاقة متحللة، بالشكل  εN=3جسیمات موزعة على  N=3جملة مكونة من  - مسألة
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01، مكونة من جسیمین، موزعین على ثلاث سویات للطاقة  جملة معزولة مثال: =ε و oεε oεε و 2= 23 =، 
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 یتطابق تفسیر نتیجة متوسط طاقة البوزون مع نتیجة متوسط طاقة الجسیم الكلاسیكي.      
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 البوزونات مع جملة الجسیمات الكلاسیكیة لجملةتتطابق نتیجة متوسط الطاقة الداخلیة      
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 الأول (السویة الأرضیة) بمعدل فیرمیون واحد لكل درجة تحلل.      
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D-  
 ل تمثیل حالات التوزع المیكرویة، كما یلي:     لكافة أنواع الجسیمات المدروسة من أشكا P2و  P1نوجد قیم       

 الجسیمات كلاسیكیة بوزونات فیرمیونات
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 السویات بالشكل: من لانھائيغیر المتمایزة. موزعة على عدد  اتجسیممن ال من عدد لانھائيمثال: جملة مكونة 
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 والتوزع یكون توزع طبیعي.    
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