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 بولتزمان تحاص تابع تطبیقات
 

 :والطاقم الأنسامبلو النسخة
 العائدة لحالة محددة من حالات التوزع الماكروي الممكن. ھي إحدى حالات التوزع المیكروي النسخة:

 العائدة لإحدى حالات التوزع الماكروي الممكن. ،النسخ) كل( التوزع المیكروي حالاتھو مجموع  :الأنسامبل
 ، التالي: M-Bإحصاء المحسوب وفق  ،المحددة لحالة الماكرویةھا یساوي الوزن الإحصائي لعددو              
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 وتكون كافة النسخ في الأنسامبل الواحد متساویة الطاقة والاحتمال.. !

 (كل الأنسامبلات). لكافة حالات التوزع الماكروي الممكن.العائدة  ،حالات التوزع المیكرويكل ھو مجموع  الطاقم:
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 وفي الحالة العامة من أجل منشور متعدد حدود نیوتن:
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 لكل منھا بثبات القیم الأخرى. Nبدءاً من الصفر وحتى القیمة  Niعلى كافة قیم  

 بالصورة: یمكن كتابة العبارة السابقة

                                  ∑∑
=

=
∑

=








=

N

N
M

N
M

i

N
i

NNNM

i
i

M

i

Mi

N
X

N
X

N
X

N
XNX

0
2

2

1

1

1

11

21

!
........

!
.......

!!
! 

 .iنكتب المضاریب السابقة على شكل مجموع جداءات، ونأخذ المجموع على المتحول 
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 نجد المطلوب: 
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 لمزید من الفھم. نستعرض المثالین التالیین:
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oεε، مكونة من سویتین للطاقةمعزولةكلاسیكیة جملة  :۲مثال oεεو  1= 22 11، متحللتین = =g   22و =g. 
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 Ρ التابع الاحتمالي:
 من الجملة الواقعة في حالة توازن بالعلاقة: iNنعرف احتمال تواجد أحد الجسیمات في السویة 
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 موزعة على ثلاث سویات للطاقة  ،من الجسیمات الكلاسیكیة Nجملة مكونة من  - :۳مثال
     )εεεεε 2,,0 321  ، وھذه Tالطاقة الحراریة للجملة عند الدرجة  TK=ε) ، حیث===
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ین ، وذلك باستخدام  الطریقتت في حالة التوازن ھو توزع طبیعيتأكد من أن توزع الجسیمات على السویا •

 :التالیتین
   ، احتمالاً)في حالة التوازن (الحالة الأكثر  3Nو  2Nو  1N احسب نسب أرقام انشغال السویات :۱طریقة 

 . )، ورتبھا eبدلالة (                        
 ،ip، ثم احسب احتمالات شغل ھذه السویات ) e(بدلالة  Zاحسب قیمة تابع تحاص الجملة  :۲قة طری          

 .في حالة التوازن، ورتبھا                        
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 الات الماكرویة التي تكون فیھا الوزن الإحصائي للح - (M-B)بتطبیق إحصاء  -احسب   -     

 .ثم استنتج حالة التوازن، ε2=Uطاقة الجملة         
 اصلة الأوزان الح ZΩ) ، واستنتج من عبارة  e(بدلالة  ZΩاحسب قیمة تحاص الطاقم   -     
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 بالشكل التالي : B)-(Mنوجد نسب أرقام الانشغال في حالة التوازن لتوزع  : ۱طریقة  •

                                                  KT
j

KT
i

KT
j

KT
i

j

i

j

i
j

i

j

i

j

i

eg
eg

ege
ege

eg
eg

N
N

ε

ε

εα

εα

εβα

εβα

−

−

−

−

+

+

=== 

                31
2

2

0

3

1
211

0

2

1 1
3
2

3
21

2
2 NNe

e
e

N
NNNe

e
e

N
N

>⇒>=
×
×

=℘>⇒>=
×
×

= −

−

−

−

 

                      321322

1

3

2 1
3
2

3
2 NNNNNe

e
e

N
N

>>⇒>⇒>=
×
×

=℘ −

−

 

 .ھو توزع طبیعي (غاوسي) (M-B)إن ترتیب أرقام الانشغال بھذا الشكل یعني أن توزع        
 ) من العلاقة : e(بدلالة  Zنحسب قیمة تابع تحاص الجملة  : ۲طریقة   
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  في الترمودینامیك: ثانيالتوابع الترمودینامیكیة الناتجة عن المبدأ ال
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بما أن المھتزات جسیمات كمیة (غیر متمایزة). فیكون تحاص طاقمھا:     
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 وھذا ما سنجده لاحقاً.   
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 متناقضة جیبس:
 . نحصل على قیمتین مختلفتین لأنتروبیة المزیج.ین بكافة الخواصمتماثل ینكلاسیكی ینعند مزج جملتي غاز

 یدُعى ھذا الاختلاف متناقضة جیبس.
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