(>ba 183 - saldll

3

[a3/ Aa) 1 1 B paladll

J

{Atoz 1z}

Tacebook Z_Z‘rouf : A to ZisS

0931497960 &)l e (What's app-Telegram) = sl (SMS) G Al &l jualaall calls 2SS0

SOLVING PROBLEMS BY
SEARCHING

Types of search algorithms

Based on the search problems we can classify the search algorithms into uninformed
(Blind search) search and informed search (Heuristic search) algorithms.

Search Algorithm

Laall)dileall e Gl chliai) yiad YAt & iz g & Liavi) yial
Uniformed/Blind Informed Search
| _» | Breadth first search |::| Best First Search I
—;...l Uniform cost search | A*search |
M Depth first search

>| Depth limited search

»| Iterative deeping depth
first search

> Bidirectional search

Uninformed search strategies el i i) onsl

Uninformed strategies use only the information available
in the problem definition o , ,
A< iy a8 L Aalial) il shaall (slpandl)iga sall e Cand) Cilins) i) p2dis

States, actions, goal test, path cost

Breadth-first SEANCH (BFS) s ottt 6, ol Uy s s e 53 Y il 51 o
. gl e Ala oo Cangdl Alla ey £l £L)

Uniform-cost search (UCS) Sl 5 40 50 s s i) i) e 55

Depth-first search (DFS)

Depth-limited search(DLS)

Iterative deepening search (IDS)

Breadth-First Search (BFS)

1. Breadth-first search (BFS)

» Expand shallowest unexpanded node

Queve: [A) @
PO,
* Frontier=(A) e \
) * Explored=() |, 7’ _/.

@Jg)eﬁ‘;’d_\wé,&:uﬁmg@u% B) (C)
/- \ /7 \

/ \ /

(D) (E) (F)

Queue: [CD, E)

* Frontier=(C,D,E)
* Explored=(A,B)

* Nodes are stored in FIFO queue (new successors go at end)

Queue: [B, C] Q

* Frontier=(B,C)
* Explored=(A)

l oy
; /\ 4
‘,_ : il{)“)

Queue: [D, EF 6]

* Frontier=(D,E,F,G)
* Explored=(A,B,C)

D) (E) F) (6

Ezaiall) Asdiall e J el 2y i

VST aagd Bamall e s oA la]l BaGal) S daly

B,C el il) kil Adlia] 5 \ginan 5 o i L)

B il 4y FIFO Jil a Yl Ll 3iiall 88l o it
SIS Y97 gl e B i) gds

17 peal o gl Riialp B i) e 3 e

T M G s G W) 0 B elid ab E D Cam CD,E

MEIECRRY JCNRGY oIS JRU- TS PRI XA I EE e
(sigsl S E 5D Jé

IS Sl ¥ Triiagll b Ja O ddiall b

M el B 1) Ll] 5 L 4 8

g s fese B B gl il S GVIDEFR,G
D (ohy 5 LAl gl s FIFO base adins g

sl lla Y dd), 008 oo oS0 g Lt gy o gl 0 Y finglBaiall 4
gl a0 S LA il g B A Skt B30 el Sl

Breadth-first search: Properties

71|

d—depth of the le

[m—maxir
s
o]
u
v &) 1 node
c W bnodes
| N 5”2 nodes
0 ————— [] bAd nodes
”»e— ¥) A bAm nodes
Time? O(b9)

gl node Wlsas el nods JS 8L 31 48 il (Al (a3l 8 o8 anll Ayl A 24T (4)
Cliall pania 335 5all node 22e

b m nodes
»
b n 1 node
€ 3 b nodes
% - 4 N bA2 nodes
¢ ————g : @ OC00000: prg nodes
m o \ b~ m nodes
Space? O(b9)

Queue ’SJS\'A.\\ ‘_,J 3.':)'5.«3\ nodes e

|| Properties of breadth-first search ||

Complete?? Yes (if b is finite)

Time?? 1+ b+ 4+ + ...+ +b(b" —1) = O(b™), ie., exp. in d

Space?? O(h""!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general st si, 29 s o s

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Breadth-first search (BFS)

BFS:1

BFS:1 4 QI\NZISI L

BFS:14 2 3 BEBBEEIEEI

BFS:1423 5

BFS:14235871096Q 9]

Breadth First Search

—» Level 0

—» Level4

Initially queue and visited array are empty.

L

02

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-

a-graph/

Remove 0 from the front of queue and visit the unvisited
neighbours and push them into queue.

Push 0 into queue and mark it visited.

Step

Q Visited: o Visited: | 0 I [l I I Visited: EJ_T_[—EI:]
e ﬁﬂ—r“T O - o
e o Front ° Front 0 o Front
BFS on Graph BFS on Graph

BFS on Graph

Remove node 1 from the front of queue and visit the
unvisited neighbours and push them into queue.

’ Visited: (—] Al L§_|

Queue z \ 3 |

Fronl

Remove node 3 from the front of queue and visit the
unvisited neighbours and push them into queue.

S (3) vt
\
J

a2

Remove node 2 from the front of queue and visit the
unvisited neighbours and push them into queue.

T Queue: 3 | 4

Front

4 4\, All of node 3 have been visited,
proceed to the next node in the queue.

’1 3 /‘ /\i
[[visited: SENENEE ko / T
il auee —f“ﬁ—[— g
4‘ \ & Y

‘4 front

BFS on Graph

BFS on Graph

BFS on Graph
Remove node 4 from the front of queue and visit
the unvisited neighbours and push them into queue.

1 —(3 VISR!d\ 0 | 1 IA__I 3 L:‘ |
] Queue: T[j_m_

@]
2 '—{ 4) All neighbors of node 4 have been visited,

proceed to the next node in the queue.

Q&

RES an Granh

e
\ N
/

Breadth-First Search (BFS)

{ABSCGDEFH)

Breadth-First Search (BFS)

{ABSCGDEFH}

Uniform Cost Search (UCS)

daliiial) ARSI, Guad) Al i)

2. Uniform-cost search (UCS)

* Expand least-cost unexpanded node ¥ cost '« node t

* Nodes are stored in Ordered queue (order by cost) First-In-First-Out (FIFO)
Queue ¢ nod J) JLEa Arer Bl 5al nod quit ALk il) 5401 G (8 A

(el Jis order by cost A4SH G yaa (e JiN a5 e (gl d8lial 5 L saie G g o 6855 p0 IS 8 805 AL A5 phal) 4
Ordered queue ;ﬁ)d\ dﬁ)ﬂ.ﬂ ‘sl};}” A=) <A Llee Lo g Aal<s &Y\ 3axl olaal 3‘5333

() (2)
1 15 1 15
3 3
(e) (©) © (& (c) (o)
10 (1] 5
G, G, (e)
C* is cost of optimal solution Optimal: Yes Time: O(beeiling(C*/2))
€ i1s minimum action cost Complete: ife> 0 Space: O(beeiling(C*/z))
1 15 Fsaiall Jpeapll a5 A L Adadi 500
G ® i gl i) g Ly s o 88 0 ¢ Y TSN 8 A S2EaD A
Jua¥le (325 30 26358 gl (o | sy I e e BLC,D s 3
10 1 1 | ..B‘JA}(;)EASJdéﬂ'lva_,b.l;jisja.\hj:_)ﬂua_;l_’xs.i
O o

Tl g i o 8 ¢ S il Y RGN b o e Ll o ity
) ' 1M a5y 0 g B 5 3y 0o ol e

1 15
3\© C by (3K JiW1) JSss CF D 2 Jii sl

¥ bl 2iall 98 e o Il ing il b s 3 ¢ el Jiny
Lgraadiy W a3 Cpa Y] Lgiala o8 jai

@
o

10

®
() SX Cuald Y £ 54
1 15 £l _'Y?.u.\g.“l‘sadtc.:hﬂl_»'_u
3
(&) ©) : el ean Cra i M o iy 1l Ll) 5 L 5y o
1 5 Eadiadl ooy (8) W AW (o g ae oW1 askl) SR ED
0 G Lt satall jaadh 508l a ¢ a1 53 S5 Ll 55 AU
(%) —
1 3% i 51 8 Ll iy Lyt S Y 0F gl 0 5l s
(&) © L T Lty JSYERAEN 8 DN T cisie Ut sl B0 [ED |
10 5 T 5l M m G Bl U85 B Laally] LS
|
® ® 9l Chogl el a1 gy |
1 e ,
®

Godll Badlig ¢ Baludl JUA e o jelly Can W daadl il (Gulaly o gt

B,C,D: JiLl Ll dilal o i Cangll sl A saiad) 32l Ay

0 Ll A8La) 5 Lgun 53 i) caagll Cond B o8 5 Y ol dilimal) 38al) a0

ginns 53 o 581 A Congl) Canad € 53801 oy siall (s Y AiLadll 3821 535 C,D,F

o sl ¢ Caagh Casl s D a5 Yool Bl 538l HLish ol DUFSE - Jiol il Al

G oo s Bladly JIVF Las Yl Adlaadt saall a0 FE R il il dilis) o \gtans sty
11 488 G Ll aiasl Yauads Yl Lgiil)

¢y yhall o (RN maal 5 (34

dalee J€ A il Qa5 e) s cilima (g y o Aelatial) 281K Casall 48y ylay Alaa Sl
JiM aaa o had Ay je & 5)al COlS LIS e 3l e Sy s
Jadl e Canny Aakaiial) AKIG Ganal) Laiy o J gV Geadl 53 dall e Cinyy Y5l m el Gl

Ja el

Breadth-first search (BFS) is a special case of uniform-cost search when

all edge costs are positive and identical.

Breadth-first always expands the shallowest node

— Only optimal if all step-costs are equal
Uniform-cost considers the overall path cost

— Optimal for any (reasonable) cost function

® non-zero, positive
— Gets stuck down in trees with many fruitless, short branches
* low path cost, but no goal node

Both are complete for non-extreme problems

— Finite number of branches

— Strictly positive search function

Breadth-first Search is a special case of Uniform-cost search
Deriving BFS from UCS:

The cost function in BFS: C(x’) = C(x) + 1 ...{1)

The cost function in UCS: C(x’) = C(x) + d(x, x') ...(2)

C(x0) = 1 in BFS and UCS ...(3)

If we make transition cost from node x to x' = 1 then;

UCS: C(x’) = C(x) + 1 ...(4)

Thus, from (1) and (4), we conclude that BFS is derived from UCS by making
transition cost as 1.

Therefore, BFS is a special case of UCS.

https://www.geeksforgeeks.org/breadth-first-search-is-a-
special-case-of-uniform-cost-search/?ref=oin_asr1

Breadth-First Search returns

the shortest path to the goal,

+ 2 even though there is a lower-
‘ cost path with more edges.

https://www.baeldung.com/cs/uniform-cost-search-vs-best-
first-search

JieY) JaliDepth
C*/t ——» bAC*/* nodes

M ——————p bAm nodes

* Process all the nodes with the cost least than the cheapest solution

» Cost of optimal solution is C* and the cost of every action is €

C* is cost of optimal solution

€ is minimum action cost Co

Optimal: Yes

sABRLal ARISI Gaad) Lgdi) (eiliad
€ L pa hoa e o oSh AGISH S 1Y ¢ AL A pla i - A gadill
e Sl A (g gy o il gy ¢ RES AW Ll siad) e gl Sl e
(e} SN &K s C* Cus O(bCHe))
O(bA[C#H/e]) : 3 81 2t
Ayl 3G) e i L pi ; RN
Sad) S G SN IS S a8 i pally Canl) Ay yLa ¢ 1S5 2yl w38 o oY
sl
Time: O(beeiling(C*/2))

mplete: ife >0 Space: O(beeiling(C7/2))

Uniform-cost search example

10
5
Source 15
B »
4
4
C >
(——
Destination
Output: 17

https://www.scaler.com/topics/uniform-cost-search/

Uniform-cost search example

Sibiu 99 Fagaras

101

Bucharest, now with g-cost 278,

is selected for expansion and the solution is returneq
ucharest

Uniform Cost Search

—» Lovel 0

exp. node nodes list CLOSED list
{S(0)}

{A(1) B(5) C(8)}

{D(4) B(5) C(8) E(8) G(10)}

{B(5) C(8) E(8) G(10)}

/%

{C(8) E(8) G°(9) G(10)} ®». @ @{
E6 GO 610wy L NUN \s
{G'(9) G(10) G™(13) } ® ® @ @

G {G(10)G”(13) }
Solution path found is S B G <-- this G has cost 9, not 10
Number of nodes expanded (including goal node) =7

MmO wog e

https://pg.its.edu.in/sites/default/files/Al1%20Unit%202.pdf

generalSearch(problem, priorityQueue)

£ of nodes tesled. 0, expanded. 0 ::T::a.&:st.:ﬂ.l;;ﬂ:_[:::::;:qm‘1 sl e\ generalSearch(problem, priorityQueue)
"SXpnd.node nodes st "Sxpnd. node] nades el JU 0 s L aowd <.
| —— expnd. node] nodes list
e e R)
S (B2,C4AS5)
B8 not gox [CAASC2+6)

genezralSearch(problem, pricrityQueus)
of nodes tested: 3, expanded: 3

expnd. node| nodes list
(S}

generalSearch{problem, priorityQueus
ol nodes tesled 4, epandad 4

of nodes tested 5, expanded 5

Texpnd.node nodes list
e e 1181 e
5 B2.C4AS) 5 [BZCAAS) 5
B {CAASGA) B [ICAASGH)
Cootgonl | {ASF 4+2.G:8) C [IASFEGH) i 3 -
i Fre (G421 GHED,
D14}

'I:Fs.c.s.- i .
} :
7

generalSearch(problem, priorityQueus}
of nodes tested” B, expanded: 5

_expnd. node| nodes list
{5}

generalSearch(preblem, priorityQueus)
of nodes tested 6, expanded 5

BZCAAS
1A5GH
A5, F6,G8]
[F-6,G:8,E9,D 14}
[(G7.GHEAD 14]
(GaESD 4]

i pxpond

>| 0| @| ol

|

(]

®®
pat: SCF 0 /w.jarrar.info/courses/Al/Jarrar.LectureNotes.Ch3.Uni
i nformedSearch.pdf

Depth-First Search (DFS)

Vol Gaalls diad
3. Depth-first search (DFS) o diall G20 3 LIFO e e st Cus ¢ €Y1 Ganll 3 855nll dasa 7y 2 lall o305

Vol as LAY Al i

» Expand deepest unexpanded node
* Nodes are stored in LI~FO stack(put successors at front)

Stack: [A) ’@

Depth-First Search (DFS)

Stack: [A] ’@ » Stack: [B.C) (4)

(=)
@

k:
Stack: [DEC) Stack: [HIEC), FaNRes

Depth-First Search (DFS)

Stack: [EC) Stack: [JKX]) Stack: [C)

Stack: [M,6)

Stack: [F.6] Stack: (LM6)

Goal is found!

3. Depth-first search(DFS)

< Complete? No (fails in infinite-depth spaces, spaces with loops)

gl et A il (aad
o 7‘
e O(bm} J.u..-'_zyswy;@ﬁuﬁdb@s&hwwdﬂ|;mU\Sdbwﬁ Al el
Gaalt Y -Vt
<+ Space? O(b.m) <t S
L}Gﬂd(ﬁﬂ_ﬂb uana.nH _)S.uwja...un a_g_)!(_lnlsuj:—m}ﬂbwum “g.mJ.“ ma.;]\
& Optlmalj No . O(b/\m) \.1.-.:.. S agadll Sl ¢ 5l a_,)ﬂ L;nhcy! e

ihmy&}ajla%ﬁiai)w]uaaﬂhdhﬂuﬁuLauﬁ

M.J;..J?Js_\d;&;!cJluej_jd.aﬁdﬂuuwmgé_}m&d;iunmowm) 2SIl
aﬁlﬂﬂ@&hﬂbam&ﬁlou PhogEil

Agllie imes Y AT

. Depth-First Search (DFS)

GaeY) Baal)) Jesias Ganll Al
bAm nodes

Number of Nodes on the entire tree= 1+b3+b%+ . +b*14bi4b™ e +bm= O(b™)

Time? O(b™)

inode 2= Julbstree & sl g 8 o5

1388 5 b B (5 sisall 5 b (SN (5 gisall (A5 1 S5V (s siall 3
1+b+b+...+b=m*b

m*b nodes 2

Depth First Search

— level 0

Depth-First Search (DFS)

DEPTH FIRST SEARCH
® O

]

outPuT: ABSCD outruT: ABSCDE outPuT: ABSCDEH

& ©® ® ®
A €©r—® A ©—®
s »
(G H) @

outPuT: ABSCDEHG
ourruT: ABSCDE HGF

Depth-First Search (DFS)

O &

/

%
©

Depth-First Search (DFS)

D
/.. /0 [g).
R e 38 e B
'’ o o ol | L2 &
/ el Vo, a
) | S—) A
(o e @ | e e |
\@40 {(ABSCDEHGF)
Yl
T ‘
.

Tree after DFS run and edges in G
I

™
1

N\

Breadth-First Search (BEFS)

Depth-First Search (DFS)

Depth-First Search (DFS)

- ’ B
&~ I o
A & S discovered = [B, , D] (0) w"f’“
/ \) / D / e \\ z discovered = [C, D]
C
/,/
- - / i 5//
i) — F
\\ . R \-\ : i R (!) ;,r’f -\.\
4 / discovered = [E, j discovered = [D] ~—~ @ \

Depth-First Search (DFS)

> g
O\

Breadth-first search

L~)

\ discovered = [B, C, 0] :

plored = [A, B]
discovered = [C, D]

\m
S\
o

G
G =[A B CD,E

xplored = [A, B, £, D] .

o3\ ©—g\

Breadth-first search

e ey
9 e m.:[.hmc,?ia.m\@)

Depth-First Search (DFS)

s

Y

4. Depth-limit search (DLS)

= Expand deepest unexpanded node until reach limit L
= Equivalent to depth-first search with depth limit L

“ EX: Let L=1

Goal is not found ! 5 Yol Banlly Canl) (e are 43 58 Gandly 5 ganall Canll
Las (e (Bae (i el Jath CalSiuin de)) &) O ixg 18

O el e e Aall e @l lass () 5 31 (0 Ulab Lgaiay

gl () a5

Number of Nodes on the entire tree= 1+b7+b7 ... +bF 403404 14 . +b™= O(b™)
4. Depth-limit search(DLS)
&] i d: depth
» Complete? No (if d>L) % g:;lﬁ PR ol
% Time? o(bh
% Space? o(b.l)

< Optimal? No

Summary of Uninformed Tree
Search Strategies

“Criterion Breadth- Uniform- Depth- Depth- [terative
First Cost First Limited Deepening
Complete? Yes Yes MNo No Yes
Time oY) Oo@®lcey owm)y O O(b?)
Space O™ o®Ic Ty oBm) O(bl) O(bd)
Optimal? Yes Yes No No Yes

Informed Search

The informed search strategies uses three main algorithms. These are:

1- Best First Search Algorithm (Greedy search)
2-A* Search Algorithm s JS Ual (n e als sl ol ot sl Ay Lall o8 (33,54l

3-Hill Climbing

Heuristic Function

» h(n) = estimated cost of the cheapest path
from node n to a goal node ;
gl sase Jin 328l e e (i)Y 3 a8l Aal<il)

» h(goal node) =0
» Contains additional knowledge of the

problem
f(n) = g(n) + h(n)
actual estimate e w he i w e Koo on maetak e
Start > n 5 Goal 71 Basadh) A0l Base e) sear gl Aganndl 4l 2 o))
« " A - v gl 3a8al)) n Sakal) (e 48K (i s sH(D)
g(n) h(n)
- —
gl
f(n)

Informed Search

Greedy Best first search

“Always chooses the successor node with the best fvalue”
where f(n) = h(n)

We choose the one that is nearest to the final state among all

possible choices f(n) = h(n) cus " Aad Juadl cld ZaaU saall Lily laay"
LSaall il LAl aaan o Caagll AMall) oY) saiall lias

Y sl Juad) Eaal)

Jead) gasi) 53l s 5 o8 (5 () el s o 2Ly s sl B8] LA S5
e sill SN) 13 Bakall s 5

priority queue a3l e

A* Search sGreedy Best-First Search (e sl e

1. Greedy search
< Evaluation function f(n) = h(n)
< h(n) is the heuristic function

< Greedy best-first search expands the node that
appears to be closest to goal

choose node with minimum f(n)

% h(n) = straight line distance (SLD) from node to goal

Straight—line distance

1o Bucharest
Arad 366
=) Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgin ¥
Hirsova 151
Tasi 226
Lugoj 244
Mchadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 93
Sibiu 253
Timisoara 329
Urziceni 80

Vaslui 199
Zerind 374

Total coast=140+99+211= 450

Is this the optimum solution ? Straight-line distance
(’_E:} l: B:;Imm
ra 366
i s _ =) Bucharest 0
) & Craiova 160
= Dobreta 242
Eforie 161
23 k-] T4 [‘.‘.r“ 178
Giurgiu n”
= — Hirsova 151
¥ «® lasi 226
Lugo) 244
- Mchadia 241
e Neamt 24
i3 i Oradea %0
Pitesti %
: ' Rimnicu Vilcea 193
Sibiu 253
- " ol - Timisoara 329
Urzicenl 80
— Vaslai 199
Chad > Zerind 374
Y ™ i)
o
-} ko

Greedy search example

366

Greedy search example |

Arad
g 253 329 374

Greedy search example |

Arad

329 374

b C Oradea) tEimnicu Vilcea)
366 176 380 193

l Greedy search example

380 193

366

Sibiu >>@ch_a@
253 0

374

Evaluating Greedy Best-First Search

Complete? No (could start down an infinite
path)
Optimal? No

Time Complexity O(b™)

Space Complexity |O(b™)

2. A* search

< Avoid expanding paths that are already expensive
< Evaluation function f(n) = g(n)+h(n)

* g(n) = cost so far to reach n (actual)
* h(n) = expected cost from n to goal (estimated)

: Ak Gy Al ok

Allad) IS ol e o g8 52Ny s ¢ ARl A8 Il 3 g gal) (LD sy
: o F(n) = g(n) + h(n):) a0 Tl o3a 25

7 skl) Adiadi Baie (ja J a5l 4031 26K ; ()

Cagl B3Nl) 8aal) (e ZEISH (ped 4 :H(D)

n 83l Y)5 e Cangll Baiie) Adal) Bo8e (o Rad Sl SN A s F(n) S
eyl JE i (i p12%3 A K Rk

Caglh ce p saall Al 4N e h¥(n) s Cus h¥(n) b § aeal hin)

4 e a8 (sl Jal 00 h(G) = 0 058 OF amg QNS H(n)>= 0 S O e

e ':.’.’""...:/ . \\-\
_-; » o
"® ® O
S -.‘ -\‘ ”", 5
. -
D OO0 @
3\".'1‘

h(n):
-
skl

f(n) = g(n)+h(n)

A" search example

366=0+366

l A" search example

T

393=140+253

Arad

447=118+329

449-75+374

A search example

Sibiu

CFagaras 3 (Oradea)

6G46=280+366 415=230+176 B671=291+380 413=220+193

Arad

447=118+329

449=75+374

A search example |

Arad

447=118+329 449=75+374

D(Fagaras » € Oradea)

646=280+366 415=239+176 671=291+380

526=366+160 417=317+100 553=300+253

A" search example |

Arad
Sibiu
i 447=118+329 449=T75+374

646=280+366 671=291+380

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

| A* search example

>

447=118+329 449=75+374
G46=280+366 B671=291+380
CPitesti >
591=338+253 450=450+0 526=366+160 553=300+253

418=418+0 ©615=455+160 607=414+192

Total coast =418
Is this the optimum solution ? yes

2. A* search

< Complete? yes

< Time? o) Exponential

< Space? p(bd_;'.eeps all nodes in memory (ook at this)

< Optimal? yes

A* SEARCHALGORITHM

S O) \ (&)
'A foy X %1
l.v A\

B/ o S
0 D\

..IM\ wl o |*|aleole

v

S|le(<|(m|O[R|C

)

\G.
" Q) «
e

10

Example of A* Algorithm in Action

2+10.4 =124

¥ 4
3+67=97 s
(B)3
y 4 +6.9=149
7”4—11(? 6+6.9=129
Dead End

4

M+ 67=11.7

BFS Breadth First Search

Traversed or SAG
Path SG $ 2
ost 12 Vo
: (s\“
S A
4 N
- ,'/ A N
(a) o \ZJ @

DFS Depth First Search

Visited
Path
Cost

Visited UCS Uniform Cost Search

8 Best First Search

A" Search

A* algorithm WS TPEQREECIEY iy - R - ROV o 17

ol 5 ek aladiuly dall | dal sl el
F(n)=8lll+H(n)

— —_ ? 5 (’EJ Y o>
2 -BO——®——© s TR A
’ ’ L O —
5 (D'\ ,fE* P o F 3 z ’6’ 8_9 B & -
w—Ta g o= ©

/'*“] s ~
(E) 6.9) 3.0

Adad) A) e i e J gee o it SN —hagl) oo Adadl ARl sed A el AadiH(n)
Oy JS (p Tl 4815 4 <l jlsall e 53 5 5all 8 ,Y) O A Adagal) daal Ay a8 a8) liat dge)) A0 038
1%a 53 4 B Adadills (0 JEny) a5 2 aA Al § e JUEY) 48lS3 Dl Laagl)
1358 5 10.4 & gl e A Adasill oy Dl

A* algorithm

B6,© 4
2 Bl Bt @0 :
11.0 B) -
. i ©w, 6 — O
5 ' i —< 3 o ® 69 @ 30
D> CED LED) .
D > L

Chagll e Aal) AT st Lo a3 Zad:H(n)

Fifi)=G(n) +H(n)
2 5
2 2
5 g 104, —
10.4

89 +8.9= 2+10.4-124 (A) \89 5.50-188
10-‘@ @9 2+104-188 P Cralt = 1 \ D
LA (e @lins F il Aad sl e s R (i o8
F(n)=G(n) +H(n) =
2+10.4= 8.9 548 2 &
104 —
2+10.4-124 (A (giff 5+8.9-1318
6.7 : 1 2
3+67-98 . B . 4+8.9-7218 = s
316798 °'B) D’ 4-5o-188
7N
E 4.0 6.9
C) 7+4.0-38 C E

A* algorithm

B6,© ¢
B——O @B 104 —
11.0 —
R
5 89 - >
@"’ ®&— i
CE w5 = 60 D30
il F

whagll fe Auial) ARl sd A jas Aad:H(n)

4

10
2+10.4-128 A
1

o
3+6.7-008 B

4
4.0 /

\

ahdll xie 11 A F Jdad jaul
Jasl) Sy dise 4hidi [giSTy C

- die laaad ra¥l dadll e diay

a0 | (C) E 7 s 50-108 A ALl 3y yh e oSy D ddasill

[-w‘wwu:»-m,.c-.m.] e
7+4.0-8 © v o 6+6.9-1219
I‘ualwﬂtyuir_\,-cu.ﬂ] - 6.9_.
A* algorithm
> 6> © Z0
A104q) =
©® v O
8.9 - =

@.,—'

7+4.0-1

[AUJWNHHS.»-H:JAC‘-&J]

whaghl Ce Audall sl s daw oS Aad:H(n)

3+67-80) 4+8.9-128
. ¥
. 7 ; 4_o<c_, CE 69 ‘E 6.9 6.69-188
AG- A el © (ERL Ng
67g (F 30 I ol Lgpad Sl Ta e o € :ai-l'l g 3
=S 11+6.7-188 10+30-18

A* algorithm

2 A1+ ®0q |
o 110 e
9 W
TZ 7 e
S 5, P /F 3 = 69 (B 3.0
Q/’ —(CE > 2 & d
2 i

: 4 o gl oo Aadadl il e A jas Zad:H(n)

a 2+10.4=5204 - 9 s+8.9-188
3+6.7-000 6'77879 4+8.9-1218
4 5
40 / '_,E,& 9 (§ 6.9 6+6.9=-12.9
7+a0-@ C 8+629’ 7 X
2l S b A R ook BN G~ CF 30 10+30-18

11+6.7-398 B
3
s . 13.0-13
Ll s (& Caagl) il dy il gl

AiSas 443 il Caagll Uilea 5 Ul

