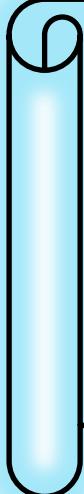


كلية العلوم

القسم : الكيمياء


السنة : الثانية

٩

المادة : لغة تخصصية ١

المحاضرة : جداول

{{{ مكتبة A to Z }}}
2024-2025

مكتبة A to Z Facebook Group

كلية العلوم ، كلية الصيدلة ، الهندسة التقنية

يمكنكم طلب المحاضرات برسالة نصية (SMS) أو عبر (What's app-Telegram) على الرقم 0931497960

Periodic table of elements

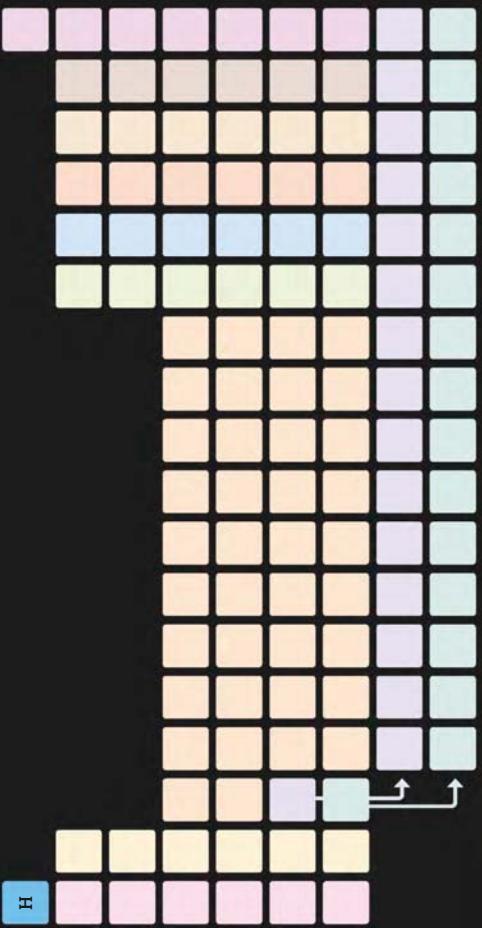
1	H	1.0079
3	Li	6.941
4	Be	9.01122
11	Na	22.990
12	Mg	24.305
19	Ca	40.078
20	Sc	44.956
21	Ti	47.867
22	V	50.942
23	Cr	51.996
24	Mn	54.938
25	Fe	55.845
26	Co	58.933
27	Ni	58.693
28	Cu	63.546
29	Zn	65.39
30		
5	B	10.811
6	C	12.011
7	N	14.007
8	O	15.999
9	F	18.998
10	Ne	20.180
13	Al	26.982
14	Si	28.086
15	P	30.974
16	S	32.065
17	Cl	35.453
18	Ar	39.948
31	Ga	69.723
32	Ge	72.64
33	As	74.922
34	Se	78.96
35	Br	79.904
36	Kr	83.80
49	In	114.82
50	Sn	118.71
51	Sb	121.76
52	Te	127.60
53	I	128.90
54	Xe	131.29
55	Cs	132.91
56	Ba	137.33
57	La-Lu	138.91
58		
59		
60		
61		
62		
63		
64		
65		
66	Dy	162.50
67	Ho	164.93
68	Er	167.26
69	Tm	168.93
70	Yb	173.04
71	Lu	174.97
87	Fr	223.00
88	Ra	226.00
89	Ac	227.00
90	Th	232.04
91	Pa	231.04
92	U	238.03
93	Np	237.00
94	Pu	244.00
95	Am	243.00
96	Cm	247.00
97	Bk	247.00
98	Cf	251.00
99	Es	252.00
100	Fm	257.00
101	Md	258.00
102	No	259.00
103	Lr	262.00

The periodic table is a useful way of organizing the elements. It arranges the elements in order of their atomic number, which is the number of protons in the nucleus of an atom, and is unique to every element. The table also divides the elements into rows, called "periods", and columns, called "groups". Dmitri Mendeleev, the chemist who devised the table, arranged the elements based on the similarity of certain physical and chemical properties.

The actinides and the lanthanides are placed between the alkane earth metals and the transition metals, but have been moved below to give them more space.

KEY	Hydrogen	The Boron Group
	Alkali Metals	The Carbon Group
	Alkaline Earth Metals	The Nitrogen Group
	Transition Metals	The Oxygen Group
	Lanthanides	The Halogen Group
	Actinides	Noble Gases

The	Boron Group
Carbon Group	The Nitrogen Group
Oxygen Group	The Halogen Group
Hydrogen	Noble Gases


Element symbol	The atomic number is the number of protons in the nucleus of this element's atoms
Letters	Every element has a unique symbol of one or two letters. These symbols ensure that scientists who speak different languages do not get confused while describing the same element.
3	The first letter of a symbol is always a capital, but the second is a lower case.

Li	6.941—
	<i>The atomic mass number is the average of all the atoms of the element. It is not a whole number because there are different isotopes forms of each element, each with a different number of neutrons.</i>
	Periods
	<i>Elements in the same period, or row, have the same number of electron shells in their atoms. So elements in period one have one electron shell, while those in period six have six electron shells.</i>
	Groups
	<i>Members of a group, or column, all have the same number of electrons in their outermost shell. For example, group one elements have one outer electron, while group eight elements have eight outer electrons.</i>

DMITRI MENDELEEV

The periodic table was developed by the Russian chemist Dmitri Mendeleev in 1869. Others had tried before, but his table was periodic, or repeating, because the characteristics of elements follow a pattern. The table was incomplete as some elements had not yet been discovered. However, Mendeleev predicted the positions of the missing elements, and was proved right when they were finally isolated many years later.

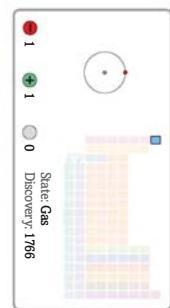
Hydrogen

The first element, hydrogen (H), is located above the alkali metals in the first column of the periodic table. However, because it is so different to the elements below it, hydrogen is not included in their group. This gas has the simplest atoms of any element with one electron and one proton. It is highly reactive and forms compounds with all kinds of other elements.

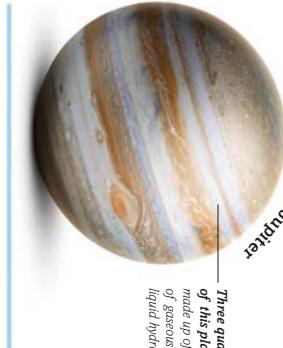
Compounds
The most common hydrogen compound is water. Acids are compounds that contain hydrogen.

Chemical properties
Hydrogen is highly flammable. It forms compounds with both metals and non-metals.

Physical properties
Hydrogen is the lightest material in the Universe. Pure hydrogen is rare on Earth, as it escapes quickly from the atmosphere into space.



Atomic structure
A hydrogen (H) atom has one electron moving around a nucleus consisting of a single proton.

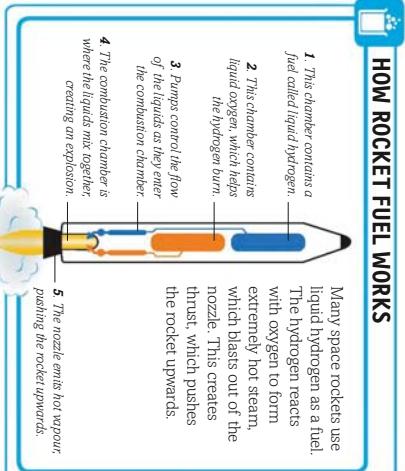

Pure hydrogen (H) fills this glass sphere, and produces a purple glow when electrified.

H Hydrogen

Forms

Uses

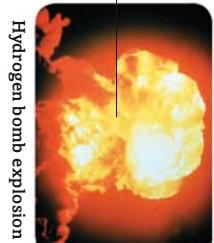
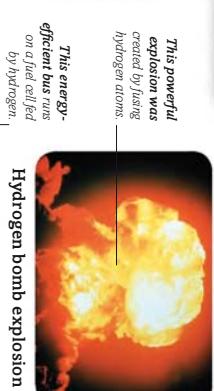
This balloon can rise high into the atmosphere where sensors gather information about atmospheric pressure, temperature, and wind speed.


Margarine is made of vegetable oils thickened by adding hydrogen.

Hydrogen peroxide

This powerful rocket uses 45,400 litres (12,000 gal) of liquid hydrogen as fuel.

This liquid is used as cleaner.

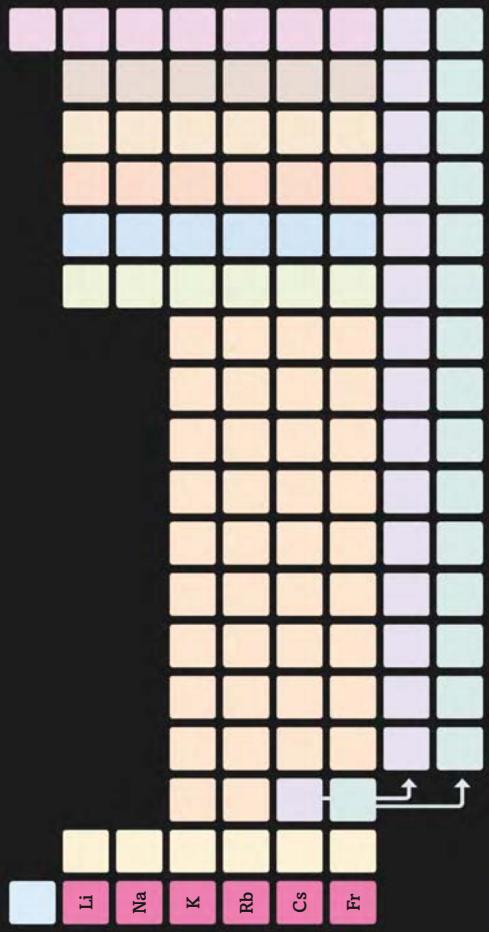


HOW ROCKET FUEL WORKS

Many space rockets use liquid hydrogen as a fuel. The hydrogen reacts with oxygen to form extremely hot steam, which blasts out of the nozzle. This creates thrust, which pushes the rocket upwards.

Delta IV rocket

The only waste product of hydrogen fuel is steam.

This powerful explosion was created by fusing hydrogen atoms.


This efficient bus runs on a fuel cell fed by hydrogen.

Hydrogen is the first member of the periodic table because it has the simplest atoms of all elements: they contain just one proton and one electron. Pure hydrogen is a transparent gas. The biggest planets, such as Jupiter, are vast balls of hydrogen mixed with

other gases, such as helium and methane. On Earth, hydrogen is commonly found in water. Although it is rare in Earth's atmosphere, hydrogen is the most common element in the Universe. Stars, such as the Sun, contain large amounts of hydrogen. At the centre of a star, atoms of

this element are fused together, releasing heat and light. New stars form inside **nebulae** – such as the **Orion Nebula**. They are clouds of hydrogen gas that slowly collapse in on themselves. Hydrogen gas is the lightest element of all, and much lighter than air. This is why **hydrogen-filled balloons**

can fly higher than air-filled ones. Supercold liquid hydrogen is used as **rocket** fuel. Atoms of hydrogen fuse together to produce a lot of energy in **hydrogen bomb** explosions. Pure hydrogen is also a clean energy source used to power some buses and cars.

Alkali Metals

After hydrogen (H) – which is in a group of its own – the first column of the periodic table contains the alkali metals. This group gets its name from the way the elements react with water. These vigorous reactions always produce acid-attacking compounds called alkalis. None of the alkali metals are ever found in a pure form in nature. The first three metals are common in many minerals, while the last three are rarer.

Compounds

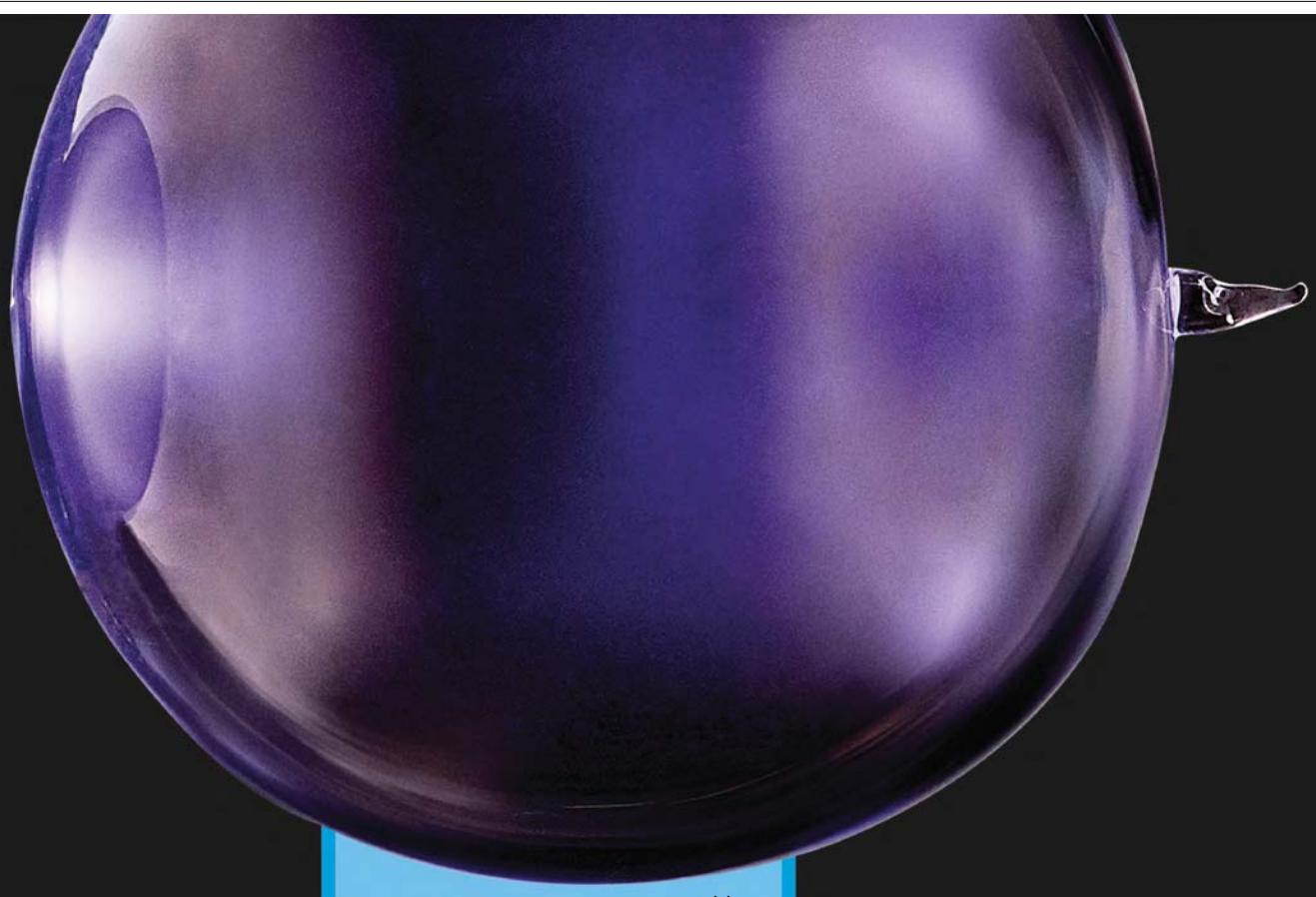
These metals react with water to form compounds called hydroxides. They react easily with halogens to form salts, such as sodium chloride.

Chemical properties

Alkali metals are highly reactive. They form bonds with other elements, giving away their single outer electron.

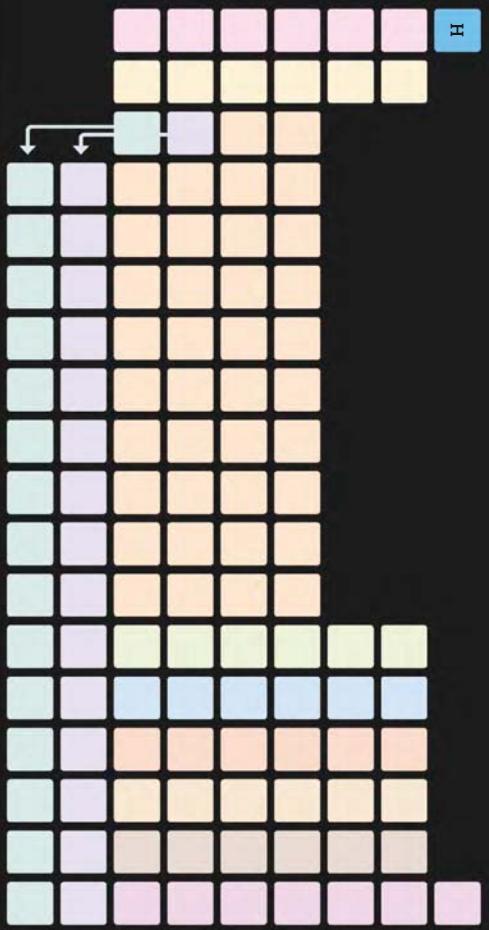

Physical properties

These metals are soft enough to be cut with a knife. They are all silvery and very shiny when clean.



Atomic structure

The atoms of all alkali metals have just one electron in their outer shell. Alkali metal atoms are among the biggest of all atoms.


Potassium (K)
tarnishes when
exposed to air.

Pure hydrogen (H) fills this glass sphere, and produces a purple glow when electrified.

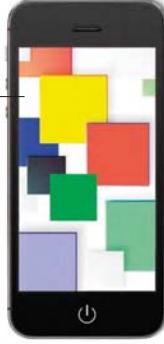
Hydrogen

The first element, hydrogen (H), is located above the alkali metals in the first column of the periodic table. However, because it is so different to the elements below it, hydrogen is not included in their group. This gas has the simplest atoms of any element with one electron and one proton. It is highly reactive and forms compounds with all kinds of other elements.

Atomic structure
A hydrogen (H) atom has one electron moving around a nucleus consisting of a single proton.

Physical properties
Hydrogen gas is the lightest material in the Universe. Pure hydrogen is rare on Earth, as it escapes quickly from the atmosphere into space.

Chemical properties
Hydrogen is highly flammable. It forms compounds with both metals and non-metals.



Compounds
The most common hydrogen compound is water. Acids are compounds that contain hydrogen.

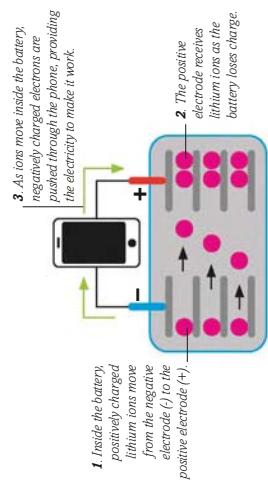
Li Lithium

Uses

Smartphones run on rechargeable batteries that use lithium to store electricity.

Smartphone

Hale telescope mirror

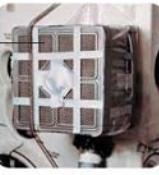

Oyster mushrooms

Drinking water

LITHIUM-ION BATTERY

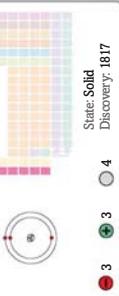
Lithium-ion batteries are widely used in digital devices. They store electrical energy to power gadgets and are rechargeable. This diagram shows a device's battery in use; when it is charging, this process is reversed.

Lithium-rich grease is used to keep mechanical parts of engines running smoothly, even when hot.

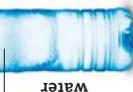

This car runs for at least **64 km** (40 miles) on one charge of its lithium-ion battery.

This charging point can recharge an electric car in one hour.

Artificial teeth


This air scrubber used lithium hydroxide to purify the air inside the Apollo 13 spacecraft.

Air scrubber


ones. A soapy compound called lithium stearate is used to make **grease**, which helps automobile engines run smoothly. This element also forms hard ceramics that are used to produce strong **artificial teeth**. Lithium compounds are used in some medicines as well.

telescopes. The main use for lithium is in rechargeable batteries. Lithium-ion batteries are small but powerful, so they are ideal for **smartphones** and tablet computers. Larger lithium batteries can power **electric cars**, which are less polluting than petrol-powered

Forms

This water contains tiny amounts of dissolved lithium minerals.

Drinking water

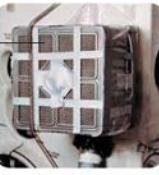
Lepidolite

Purple crystals containing lithium

Bar of pure lithium refined in a laboratory

Grey-white crystals

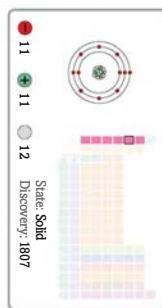
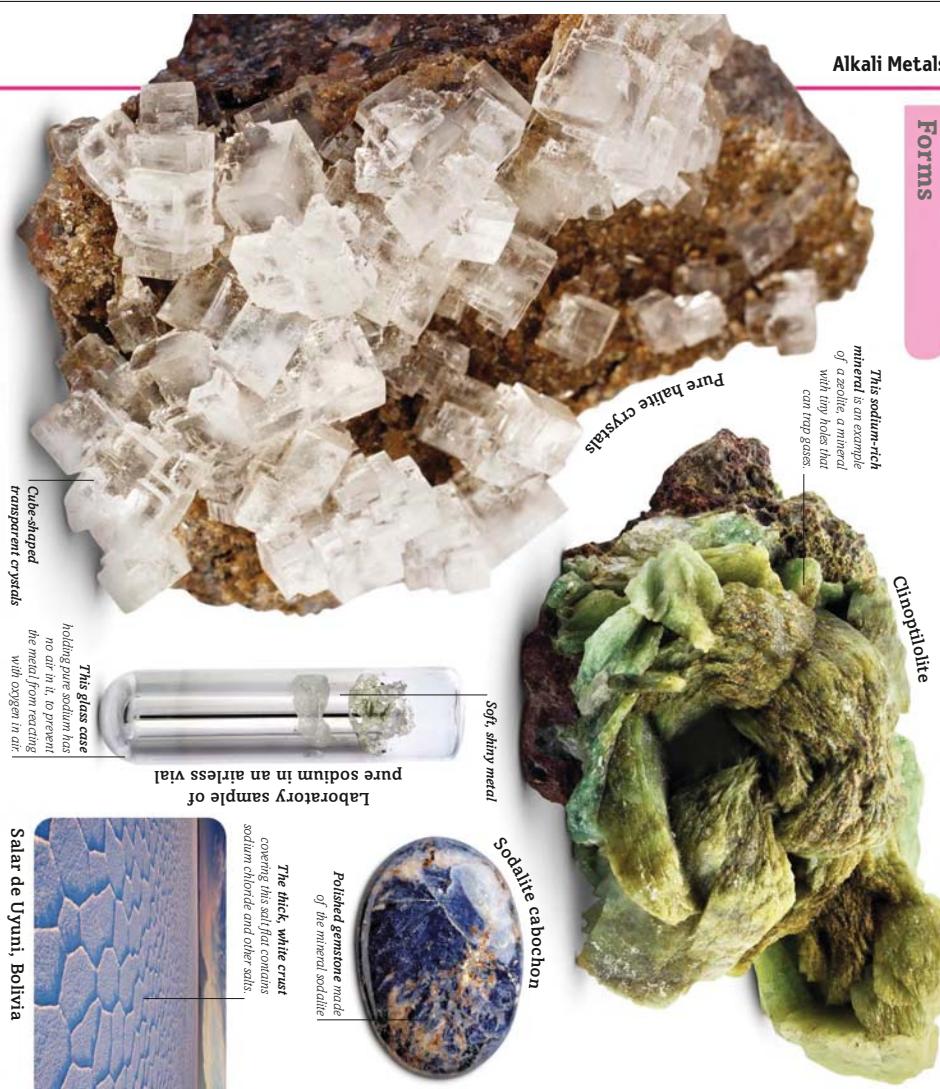
contains millions of tonnes of dissolved lithium. Lithium is found in many foods, such as **mushrooms**, **prawns**, nuts, and seeds. It also has many everyday applications. Glass composed of lithium is resistant to heat and is used in scientific equipment, such as **mirrors inside**


Lithium is the the lightest of all metals: in fact, it can easily float on water. Pure lithium is very reactive and exists in nature only in minerals, such as **lepidolite and **petalite**. Many lithium minerals dissolve well in **water**, and the world's seawater**

Some **artificial teeth** contain lithium discite, which makes them strong.

Artificial teeth

This air scrubber used lithium hydroxide to purify the air inside the Apollo 13 spacecraft.



Air scrubber

ones. A soapy compound called lithium stearate is used to make **grease**, which helps automobile engines run smoothly. This element also forms hard ceramics that are used to produce strong **artificial teeth**. Lithium compounds are used in some medicines as well.

telescopes. The main use for lithium is in rechargeable batteries. Lithium-ion batteries are small but powerful, so they are ideal for **smartphones** and tablet computers. Larger lithium batteries can power **electric cars**, which are less polluting than petrol-powered

11 Na Sodium

Forms

Uses



Everyday salt contains lots of sodium. Although abundant on Earth, sodium is never found in its pure form naturally; it forms compounds with other elements. Sodium chloride, which also contains chlorine, is the most common sodium compound. It is also known as the mineral sodium chloride.

halite, and it is what makes seawater salty. Other sodium minerals include **sodalite**, a soft blue stone that can be shaped and polished. **Pure sodium** is soft enough to be cut with a knife. It reacts with oxygen in the air, forming a compound called sodium oxide, and bursts


into flames when in contact with water. Sodium compounds in **fireworks** burn with a yellow-orange colour. In ancient Egypt, crystals of sodium compounds were used to preserve dead bodies as **mummies**. Another useful compound is sodium bicarbonate, or **baking soda**, which makes dough

rise by releasing bubbles of carbon dioxide. When refined sodium chloride, or **common salt**, has several uses. It makes ice melt so it is used in salty grit added to slippery, frozen roads. This helps **de-ice** them to make them safer. It is also an important seasoning for meals.

The salt forms part of rocks deep underground before it is dissolved by the stream and flows into the pools. Evaporation can also be used to collect salt from seawater or other salty water sources (known as brines). Today, however, most of the world's salt comes from underground mines containing thick layers of salt that are a result of

ancient seas drying out. Over millions of years, that dry salt has become buried under dense layers of rocks. This so-called "rock salt" is sometimes unearthed using excavators. At other mines, it is washed out by piping in warm water, which dissolves the salt. The brine is then pumped up to the surface for evaporation.

SALT FLATS Hundreds of artificial ponds dot the hillside near the small town of Maras, high in the Andes of Peru. The ponds fill with water from a stream that runs down from the nearby mountains. In the sunshine, the water evaporates, leaving behind a thick salt crust that can be collected. The people of Maras have been gathering salt in this way for at least 500 years.

88
Ra

Radium

This one contains just 0.7 g (0.02 oz) of radium in every 1,000 kg (2,205 lb) of rock.

This one contains just 0.7 g (0.02 oz) of radium in every 1,000 kg (2,205 lb) of rock.

In 100 years time, only 4% of the radium atoms in this watch would have broken down.

The radium paint in this clock makes the numbers glow green-blue in the dark.

Radium was discovered in 1898 by Marie and Pierre Curie. They found that uranium ores produced more radioactivity than expected from samples of uranium. They realized another radioactive metal was present and named it radium.

Uses

PIERRE AND MARIE CURIE

Radium is the only radioactive member of the alkaline earth metals. It is also the rarest element in this group, and forms in small amounts when the atoms of more common metals – such as uranium and thorium – break down. Radium atoms do not survive for long,

with most of them quickly decaying into radon, a radioactive noble gas. This element is highly dangerous and is rarely used today. However, in the early 20th century, radium compounds were in common use. Luminous paints, like those used to make watch dials

glow in the dark, were created using radium. People working with this paint often became ill, especially with cancer, because the radiation produced by radium damages DNA. Nevertheless, until the 1940s, many people thought radium's radioactivity made them

stronger, not weaker. They injected themselves with **vials** containing a **radium compound**, believing it gave them an energy boost. They also thought that creams and **cosmetics** with radium in them made the skin healthier, even though they did exactly the opposite.

GOLDEN BUDDHA

A precious statue of Buddha with one thousand eyes and one thousand hands stands in Long Son Pagoda, a temple in Nha Trang, Vietnam. The Buddha is depicted as holding a range of sacred objects, including scrolls and white lotus flowers. This statue is completely covered in a layer of pure gold, and it draws in hundreds of devotees from across the world.

Transition Metals

THE HOLTERMANN NUGGET

This very thin layer of gold was placed over the pharaoh's mummified face. The largest piece of natural gold was found on 19 October, 1872, near the small town of Hill End in Australia. Named after its discoverer, Bernhard Holtermann, the piece contained more than 90 kg (198 lb) of pure gold.

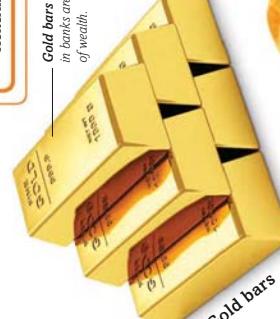
Holtermann Nugget

Child aged 10 years old

Tutankhamun's death mask

This mask

protects the astronaut's heart.


This very thin layer of gold protects the astronaut from the Sun's heat.

Astronaut's visor

Uses

Gold bars stored in banks are a sign of wealth.

Gold bars

Gold flakes

Edible

Gold flakes

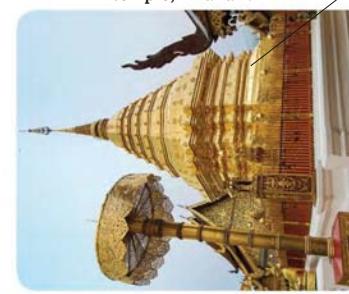
The flakes decorating this expensive chocolate are edible.

Gold teeth

These replacement teeth are made of gold and mercury.

Gold foil

keeps this car engine at a stable temperature.


McLaren F1 car engine

Ancient gold jewellery

This necklace is made from cast gold.

Wat Phrathat Doi Suthep temple, Thailand



A thin layer of gold covers this entire temple.

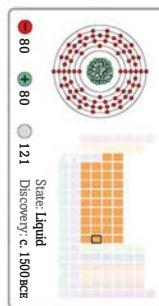
Royal Crown Derby plate

This glass plate contains specks of gold.

from it. Some of the earliest coins, found in Turkey, were made of it. Gold is used to cover important buildings, such as Thailand's Wat Phrathat Doi Suthep temple. This precious metal is most commonly used today in jewellery or decorations.

The applications for gold include heat shields in astronauts' visors. This metal has always been seen as valuable and many ancient artefacts, such as the 3,300-year-old death mask of Egyptian pharaoh Tutankhamun, were forged

Although humans have discovered many strong metals and useful elements, gold has remained one of the most valuable. Before people knew what it was they saw glittering gold dust in river beds or dug large gold nuggets out from rocks. They found that gold has many valuable qualities: it is soft enough to hammer into any shape and can be melted down for moulding


into ornaments. Best of all, its gleaming golden colour never fades away. Ancient cultures prized items made of gold: in ancient Egypt gold was used to make coins as well as to cap the tops of pyramids. Gold is, however, so rare that if all the world's mined gold were forged into a cube, it would fit inside the penalty area of a soccer pitch.

Transition Metals

Forms

Mercury

This bright red mineral is the main ore of mercury used today

Cinnabar

The "ribbed" effect is due to mercury's extremely high density.

Liquid form of pure mercury

This metal melts at -39°C (-38°F).

Solid mercury is soft enough to be cut with a knife.

Mercury is the only metal that is liquid at room temperature. Along with water, it is one of the few liquids found naturally on Earth's surface. **Pure mercury** forms around volcanoes where the heat separates it from its minerals, such as cinnabar. This red mineral has been

used for many centuries: ancient Romans roasted cinnabar to release a liquid they called *hydargyrum*, meaning "silver water". This was the element mercury. It was later known as quicksilver because of how fast it flowed as a stream of liquid. This metal is very poisonous:

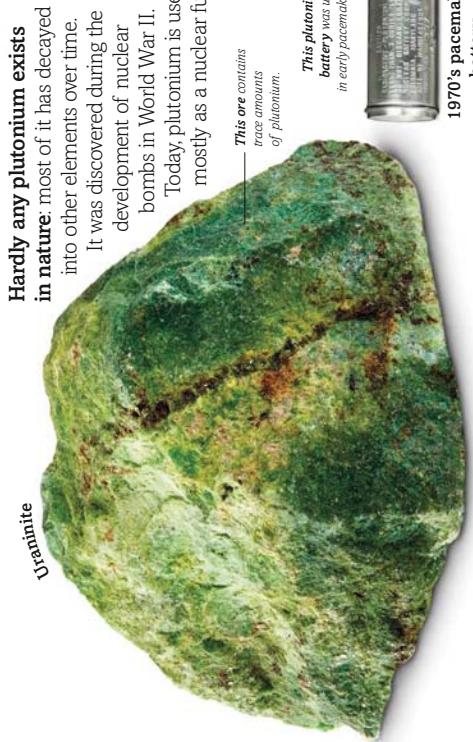
Uranium

92
U

Named after the planet Uranus, uranium was the first known radioactive element. In the early 20th century, some manufacturers used uranium in **glass bowl** glazes, only to realize later that it was a harmful metal.

An unstable form, called uranium-235, is used as fuel in nuclear reactors and in atomic bombs.

This sample of pure uranium is waste from a nuclear plant.


These black sections contain uranium dioxide, which is the main source of uranium.

Chunk of pure uranium

Glass bowl

Uranium mixed into glass makes this bowl glow bright green under ultraviolet (UV) lamps.

Uraninite

Hardly any plutonium exists in nature; most of it has decayed into other elements over time. It was discovered during the development of nuclear bombs in World War II.

Today, plutonium is used mostly as a nuclear fuel.

This ore contains trace amounts of plutonium.

Curiosity Rover

This Martian rover uses the heat given off by a supply of plutonium to generate electrical power.

State: Solid
Discovery: 1940
94
Pu

Plutonium

94
Pu

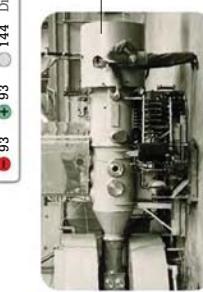
Hardly any plutonium exists in nature; most of it has decayed into other elements over time. It was discovered during the development of nuclear bombs in World War II.

Today, plutonium is used mostly as a nuclear fuel.

This ore contains trace amounts of plutonium.

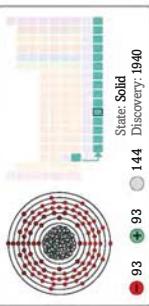
Curiosity Rover

This Martian rover uses the heat given off by a supply of plutonium to generate electrical power.


State: Solid
Discovery: 1940
94
Pu

Neptunium

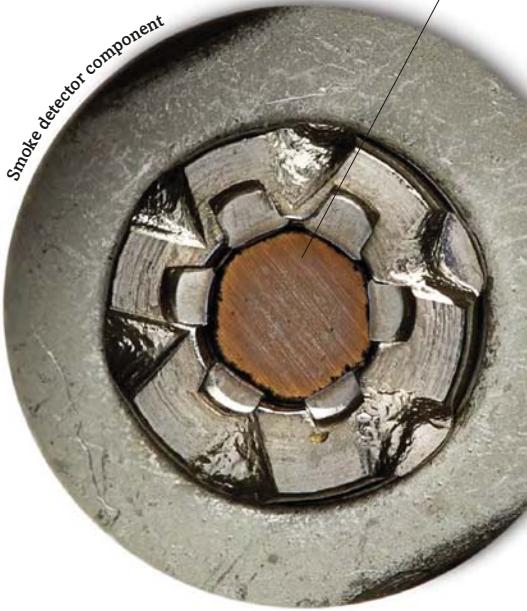
93
Np



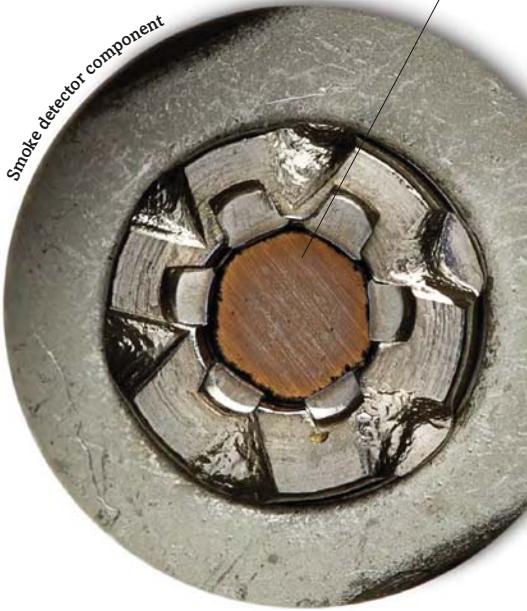
Uraninite

Cyclotron at the University of California, Berkeley, USA

Sitting next to uranium in the periodic table, neptunium was named after the planet Neptune. It exists in small amounts in radioactive ores, such as aeschynite. It forms during nuclear explosions and was first identified inside a machine called a cyclotron. There are no known uses for neptunium.



This cyclotron, built in 1938, was used to discover neptunium.


State: Solid
Discovery: 1940
93
Np

Americium

95
Am

Smoke detector component

This metallic element is not found in nature. Instead, it is produced inside nuclear reactors when uranium or plutonium atoms are bombarded with neutrons. Remarkably, americium is the most common radioactive element used in the home. Radioactivity emitted by americium atoms causes the air inside smoke detectors to conduct electricity. When smoke disrupts the electric current, an alarm goes off.

This smoke detector contains tiny, harmless quantities of americium.

Named after the planet Uranus, uranium was the first known radioactive element. In the early 20th century, some manufacturers used uranium in glass bowl glazes, only to realize later that it was a harmful metal.

An unstable form, called uranium-235, is used as fuel in nuclear reactors and in atomic bombs.

The radioactive elements in this mineral decay to form neptunium.

Actinides

Hardly any plutonium exists in nature; most of it has decayed into other elements over time. It was discovered during the development of nuclear bombs in World War II.

Today, plutonium is used mostly as a nuclear fuel.

This ore contains trace amounts of plutonium.

Curiosity Rover

This Martian rover uses the heat given off by a supply of plutonium to generate electrical power.

State: Solid
Discovery: 1940
94
Pu

مكتبة
A to Z