
  

 كلية العلوم

 الرياضيات :القسم 

 الثانية السنة :

 

  

 

 

 

 

 

 

 }}  A to Z كتبة  م {{
 

 

 Facebook Group : A to Zكتبةم 

 

    

 

 فيزياء للرياضيات المادة :

  /نظري/الاولى المحاضرة :

   كلية الصيدلة , الهندسة التقنيةكلية العلوم ,      

 0931497960 مرق(على الWhat's app-Telegram( أو عبر)SMSيمكنكم طلب المحاضرات برسالة نصية )

7  



 الملحق
 تكاملات بواسون:

 

                                                    


 

 





 )(;2

0)(;0
'

2

nIصٗجٜ

nٛفشدn
dxexI

n

xn

n

 

 قَٞح اىرناٍو اىراىٜ: Inدٞس ٝأخز اىذذ 

                    





























012)(;

2

!

0)(;

2!
2

!

1

1
1

0

2

mmnٛفشدn
m

nٜصٗجn
n

n

dxexI

m

n
n

xn

n







 

 أٗجذ قَٞح اىرناٍلاخ اىراىٞح: أٍصيح:

1-                                                                                        )(1;0
2

ndxexفشدٛ x 






 

2-                                )(2;
2

1

2!1

!2
22

333

0

22 22

ndxexdxexصٗجٜ xx 













 









 





 

3-    )(0;
2

1
2

2!0

!0
22

222

0

00 ndxexdxexdxeصٗجٜ xxx 




























 















 









 

4-                                      0112)(1;
2

1

2

!02

0





 mmnٛفشدndxex x



 

5-                                 1312)(3;
2

1

2

!1
22

0

3 2





 mmnٛفشدndxex x



 

 

 : (Gamma function))( غاماتابع 

                              ّؼيٌ أُ:              1)10(
0

0









xx edxe 

ٗأُ:                               0;
1

)10(
11 1

0

0

 





 qq
qq

e
q

dxe xqxq 

 :  , فْذصو ػيٍٚشج nٗ ٍشج, ٍٗشذِٞ, ٗشلاز ٍشاخ, ٗ ......... qتَفاظيح اىطشفِٞ تاىْسثح ىيصاتد 

  2

0

!1 



  qdxex xq   ٗ3

0

2 !2 



  qdxex xq   ٗ   4

0

3 !3 



  qdxex xq ........... ٗ  ٗ  )1(

0

! 



 
nxqn qndxex 

 :  ىِٞٞاىَؼشف تأدذ اىشنيِٞ اىرا اىرناٍيٞح اىَؼشٗفح ىيراتغ غاٍا فْذصو ػيٚ اىصٞغح 1qّفشض قَٞح اىصاتد 

                         !)1(!)1()(
00

1 ndxexnndxexn xnxn  









 

 ّ٘جذ اىؼلاقح تَْٖٞا تاىشنو اىراىٜ:

                                           )()1( nnn    )(!)1(!)1( nnnnnn 

   :ٍلادظاخ

                                              1)2()1(   ُ1(0!)2(1!1لأ(  

                                          1)10()1( 0

00

0 











xxx edxedxex 

10دٞس  nٍِ أجو قٌٞ   n  

٢



                                                                            
)(

)1(.)(




nSin
nn  

 ّجذ: 21nػْذٍا  ٍصاه:

                                            )
2

1
(     





)
2

(

)
2

1
(.)

2

1
(

Sin

 

 نُ٘داىح خاصح: ػْذٍا ٝ
2

1
n  3,2,1,0......,ػذد مسشٛ دٞسn :ّجذ 

        

nn

nnnn

nnnnnnnnn

2

!.!)12(

2

.1.3.........)52()32()12(

)
2

1
(.

2

1
.

2

3
.......)

2

5
)(

2

3
()

2

1
()

2

3
()

2

3
()

2

1
()

2

1
()

2

1
()

2

1
(

 







 

 .ىَا داخو اىق٘سٍِِٞ أجو اىقٌٞ اىفشدٝح فقػ ػيٚ أُ اىؼاٍيٜ ٍأخ٘ر  !!ٍيٜ اىَعاػف ذذه إشاسج اىؼا

 أٗجذ قَٞح ٍاٝيٜ: ٍصاه:

                                                                    
2

)
2

1
(

2

1
)

2

1
1()

2

1
1()

2

1
1()

2

3
(


 

        أٗ تاىشنو:        
2

)
2

1
(

2

1
)1

2

1
()

2

3
(


 

                                    
4

3
)

2

1
(

2

1

2

3
)

2

3
2()

2

3
2()

2

1
2()

2

1
2()

2

1
3()

2

5
(


 

أٗ تاىشنو:              
4

3
)

2

1
(

2

1

2

3
)1

2

1
(

2

3
)

2

3
(

2

3
)1

2

3
()

2

5
(


 

 هامة: رياضية علاقات
 ٝؼشف تاىشنو اىراىٜ: :(Zeta Function)ذاتغ صٝرا 
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),,,........,(ٍرذ٘ه  nٗمَا ٕ٘ ٍلادع ىذْٝا  321 nxxxx  ِٞٗاىَعشٗت  ٗ  2أٛ ىذْٝاn  .ٍجٖ٘ه 

 .cte1  ٗcte2ٗاىششغِٞ  (***)ّسرطٞغ إٝجادٕا تاىذو اىَشرشك ىيَؼادلاخ 

 فيزيائياً:
 اىزٛ تِٞ ٝذْٝا: أٗ اىرشٍ٘دْٝاٍٞل الإدصائٜ( دصائٜ,الإ )اىَٞناّٞل ٍقشس اىفٞضٝاء الإدصائٞحتالإسقاغ ػيٚ 

   التابعf:  

 ىلأسثاب اىراىٞح: ح الأٍصوذَصو ذاتغ اىذاىح اىرشٍ٘دْٝاٍٞنٞ تاػرثاسٕا Sٍطاتقاً ىلأّرشٗتٞح  fّأخز اىراتغ  

),,(جَيح اىرشٍ٘دْٝاٍٞنٞح تراتغ ٍِ اىشنو الأّرشٗتٞح اىَرذ٘لاخ اىجٖشٝح اىَسرقيح ىيشتػ ذ - TVPS ٝذػٚ ٍؼادىح اىذاىح. 

 الأّرشٗتٞح ٕٜ اىراتغ اىَشرشك اى٘دٞذ تِٞ اىرشٍ٘دْٝاٍٞل اىنلاسٞنٜ ٗاىرشٍ٘دْٝاٍٞل الإدصائٜ  -

 . ٕٗزا ٍْسجٌ ٍغ  اىْٖاٝح maxSأُ ذنُ٘ أّرشٗتٞرٖا أػظَٞىح, أٛ  ٕ٘ ششغ اىجَيح اى٘اقؼح فٜ داىح ذ٘اصُ ذشٍ٘دْٝاٍٞنٜ -

),,(max0اىذذٝح اىؼظَٚ ىيراتغ    SSTVPdS راخ جَيح اىرشٍ٘دْٝاٍٞنٞح ذاىح اىَامشٗٝح ىي, ٕٜٗ ذ٘افق اى 

٥



 maxWاى٘صُ الإدصائٜ الأػظَٜ    

WKSٗج٘د قاُّ٘ ت٘ىرضٍاُ تاىصٞغح  - ln, زٛ ٝشتػ تِٞ الأّرشٗتٞح اىS مَرذ٘ه ٍشرشك ٗاى٘صُ الإدصائٜ ىيجَيح 

   W ٜأٗ تاىصٞغح  .مَرذ٘ه إدصائlnKS ,  دٞس َٝصو نشٗٝح.الاذٖا اىَٞادرَاه ٗج٘د اىجَيح فٜ إدذٙ د 

 َا ٝيٜ:ىصاىس فٜ اىرشٍ٘دْٝاٍٞل مٗااىصاّٜ ٍغ اىَثذأِٝ  ٔرطاتقاىَرجيٞح تقاُّ٘ ت٘ىرضٍاُ خص٘صٞح  -

                                     maxmax )( STTS    ٗ  ّٜ0(0ىيصا(  oKTS ىيصاىس 

WKSfاىفٞضٝائٜ  ٍطاتقاً ىقاُّ٘ ت٘ىرضٍاُ fتْاءاً ػيٚ ٍا سثق ٝؤخز اىراتغ اىشٝاظٜ      ln 

 ي الشرطيه )القيديه(تابع  cte1  ٗcte2:  

 . ّأخز ذاتؼٜ اىششغِٞ )اىقٞذِٝ( ٍطاتقِٞ ىششغٜ اىجَيح اىَؼضٗىح اىَرَصيِٞ تاّذفاظ ػذد جسَٞاذٖا ٗغاقرٖا اىذاخيٞح

cteNNششغ اّذفاظ ػذد جسَٞاخ اىجَيح اىَؼضٗىح:   -
i

i  1 

cteNUششغ اّذفاظ غاقح اىجَيح اىَؼضٗىح:   -
i

ii   2 

 معادلة لاغراوج:  

 cte1  ٗcte2اىَششٗغح تاىقٞذِٝ  maxSاىَذققح ىيْٖاٝح اىذذٝح اىؼظَٚ ىلأّرشٗتٞح  ّنرة ٍؼادىح لاغشاّج    

 تاىشنو اىراىٜ:    

                           00 11max2111  dUdNdSddfd  

maxmaxmaxmaxتقَٞرٖا ٍِ قاُّ٘ ت٘ىرضٍاُ  dSٗتاىرؼ٘ٝط ػِ الأّرشٗتٞح      ln WdLnKdSWKS  , 

 ٗتاىرؼ٘ٝط ّجذ:    

                                                011max  dUdNWdLnK  

ٗاػرثاس ٍعشٗتٜ لاغشاّج   Kشاترح ت٘ىرضٍاُ  تقسَح غشفٜ ٍؼادىح لاغشاّج ػيٚ    
KK

11 



  :ّجذ 

                                              0max  dUdNWdLn    

 ٕٜٗ ذؼثش ػِ ششغ اىذاىح اىَر٘اصّح ىيجَيح اىرشٍ٘دْٝاٍٞنٞح اىَؼضٗىح تششغ اّذفاظ ػذد جسَٞاذٖا ٗغاقرٖا اىذاخيٞح.    

 ٗتاػرثاس   

           0
i

idNdN      ٗ       
0)(

0

 
i

ii

i

iiii

i

ii dNdNdNNddU   :ّجذ 

                                             0max  
i

ii

i

i dNdNWdLn  
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 المبادئ الأساسیة في الاحتمالات والإحصاء
 

  Probability مفھوم الاحتمال:
}فضاء العینة المعطى بالشكل:    Ωمتحول عشوائي و  xلیكن  }nn xxxx ,.........,, 121 −=Ω 

 مرة.  Nمن المرات قدره محدود عند إجراء تجربة ما عدد  xعدد مرات ظھور الحدث  xn)(نفرض 

لمقدار ندعو ا
N
xn  . xبتواتر ظھور الحدث  )(

 یتحول التواتر إلى احتمال عند إجراء التجربة عدد لانھائي من المرات. ونصوغ ذلك بالعبارة:

                                                                   1)(0;)(lim)( ≤≤=
∞→

xp
N
xnxp

N
 

 وعة أحداث یساوي مجموع احتمالات الحدوثاحتمال اجتماع مجم :۱قاعدة 
                                                                          ∑=

i
ii xpxp )()( 

 احتمال تقاطع مجموعة أحداث یساوي مجموع جداء احتمالات الحدوث :۲قاعدة 
                                                                         ∏=

i
ii xpxp )()( 

nApحدثین مستقلین وكان  Bو  A: لیكن ) n . m(قاعدة الـ  mBpو  )(=  عندئذٍ نكتب  )(=
                                                       mnBpApBAp .)().()( == 

عند رمي ثلاث حجارة مرة واحدة. نلاحظ أن الأحداث مستقلة (لایؤثر رد ثلاث مرات متتالیة، أو عند رمي حجر ن مثال:
 )1,1,1(ظھور رقم على أحدھا في ظھور بقیة الأرقام على الأخرى). فما ھو احتمال ظھور مجموعة الأرقام التالیة 

                                                
216
1

6
1

6
1

6
1)().().()( === CpBpApCBAp  

 . Cإلى  B، وأربع طرق للوصول من  Bإلى  A، ویوجد ثلاث طرق للوصول من (A,B,C)لدینا ثلاث مدن  مثال:
.124.3ھو  Cإلى  Aفیكون عدد طرق الوصول من          === mnN 

 التوزع والكثافة: يتابع
 المفروض.تابع التوزع  xW)(قیم منفصلة، ولیكن متحول عشوائي یأخذ  xنفرض  حالة التوزع المنفصل: -۱
=∑بالشكل التالي:  xW)(فإذا أمكننا كتابة  

x
xxW )()( ω  عندئذٍ ندعو)(xω  توزع الحالة المنفصلة. كثافةتابع 

 تابع التوزع المفروض. xF)(ي یأخذ قیم متصلة، ولیكن متحول عشوائ xنفرض  :ستمرحالة التوزع الم -۲
=∫بالشكل التالي:  xF)(فإذا أمكننا كتابة  

x

dxxfxF  . الحالة المستمرةكثافة توزع تابع  xf)(عندئذٍ ندعو  )()(

 :الاحتمالیین التوزع والكثافة يتابع
. ویدُعى حینئذٍ تابع كثافتھ یدُعى تابع توزع الحالتین (المنفصلة والمستمرة)، تابع توزع احتمال إذا حقق الشرط الواحدي

 بتابع الكثافة الاحتمالي. كما یلي:
                                       1)()( == ∫

x

dxxfxF                          1)()( ==∑
x

xxW ω 

  :الشروط الریاضیة لتابع كثافة الاحتمال
وإذا وجد عدد محدود من نقاط عدم  أن یكون مستمر ومعین وقابل للاشتقاق في كل نقطة من مجال التعریف. -۱

 التعیین، فیعامل عندئذٍ معاملة التابع المستمر.
 أن یكون موجب (متزاید). -۲
 أن یحق الشرط الواحدي. -۳

  Permutations قاعدة التراتیب:
 عنصر في كل مرة نستخدم العلاقة التالیة: rعنصر مأخوذاً منھم  n (تبادیل مرتبة) لـ لإیجاد عدد طرق ترتیب

                   )1.........()2()1(
!)(

!)()1.........()2()1(
!)(

!
+−−−=

−
−+−−−

=
−

= rnnnn
rn

rnrnnnn
rn

nPn
r 
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حرفاً حرفاً في المرة الأولى، وحرفین حرفین في مأخوذاً  (A,B,C)دد طرق تنضید الحروف أوجد (مع التمثیل) ع مثال:
 یة وثلاثة حروف في الثالثة.الثان

}                  من أجل حرف حرف                                 }CBAP
r
n

,,3
!)13(

!3
1
3 3

1 ⇔=
−

=⇒




=
= 

            ن                            من أجل حرفین حرفی








⇔=
−

=⇒




=
=

CBCABA
BCACAB

P
r
n

,,
,,

6
!)23(

!3
2
3 3
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              حروف                       من أجل ثلاثة 








⇔=
−

=⇒




=
=

BACACBCBA
CABBCAABC

P
r
n

,,
,,

6
!)33(

!3
3
3 3
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 ، حیث نحصل على مجموعة جدیدة عند أي تبدیل بین عنصرین من مكوناتھا.الترتیب مھمیلاحظ ھنا أن 
 

 أوجد عدد الكلمات المكونة من ثلاثة أحرف، التي یمكن تشكیلھا من الحروف (م، ل، ح). مثال:

                                   








⇔==
−

=⇒




=
=

ملححملمحل
حلملمحلحم

P
r
n

,,
,,

6!3
!)33(

!3
3
3 3

3 

 
  Combinations :وافیقعدة التقا

 عنصر في كل مرة نستخدم العلاقة التالیة: rمأخوذاً منھم  متمایز عنصر n تبادیللإیجاد عدد طرق 

                                                                     
!!)(!

!
r
P

rnr
n

r
n

C
n

rn
r =

−
=








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 مجموعة الواحدةنلاحظ ھنا أنھ لیس لترتیب العناصر أھمیة ضمن ال
 

 في الحالات التالیة: (A,B,C)  أعضاء مرشحینثلاثة بین وفد من أوجد (مع التمثیل) عدد طرق انتخاب  مثال:
 الوفد مكون من عضو واحد ، الوفد مكون من عضوین، الوفد مكون من ثلاثة أعضاء.

}                من أجل عضو واحد                                 }CBAC
r
n

,,3
!)13(!1

!3
1
3 3

1 ⇔=
−

=⇒




=
= 

}                                           عضوینمن أجل  }BCACABC
r
n

,,3
!)23(!2

!3
2
3 3

2 ⇔=
−

=⇒




=
= 

}                                               أعضاءمن أجل ثلاثة  }ABCC
r
n

⇔=
−

=⇒




=
=

1
!)33(!3

!3
3
3 3

3 

 
 طلوب:والم .سیدات 6رجال و  8بین من أشخاص  5مكونة من یرُاد تشكیل لجنة  مثال:

 سم والجنس.التشكیل بغض النظر عن الاأوجد عدد طرق  -۱
 بغض النظر عن الاسم. رجال وسیدتین في اللجنة 3وجود إذا اقتضت الضرورة  التشكیلأوجد عدد طرق  -۲

 شخص 14أشخاص من   5نطبق عبارة التوافیق بحیث نختار -۱الحل: 

                                                                       2002
!9!5

!14
!)514(!5

!14
5

14
==

−
=







 

56رجال                   8رجال من  3اختیار  عدد طرق -۲        
!5!3

!8
!)38(!3

!8
3
8

==
−

=






 

15سیدات                   6اختیار سیدتین من  عدد طرق            
!4!2

!6
!)26(!2

!6
2
6

==
−

=






 

8401556              فیكون عدد طرق تشكیل اللجنة            =×=N 
 

 مجموعة بالشكل  mعنصر موزعة مسبقاً على  Nلإیجاد عدد طرق تبادیل  :بادیل ذات التوزع المسبققاعدة الت

                                                                 1 2 1
1

...........
m

i m m
i

N n n n n n−
=

= = + + + +∑ 
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 نستخدم العلاقة التالیة:

                        1 2, ,....
1 2 1 2

1

! !
! !....... ! ! !....... !!

m

N
n n n m

m m
i

i

N N Nw C
n n n n n nn

=

 
= = = = 

  ∏
 

 . )غیر المرتبة (التبادیل نطبق قاعدة التوافیق البرھان:
 مجموعة:  mعنصر) من أصل  n1المجموعة الأولى (المكونة من  عدد طرق اختیار

                                                                
11

1 1 1

!
! ( ) !

N
n

N Nw C
n n N n

 
= = =  − 

 

)عنصر) من أصل الباقي  n2اختیار المجموعة الثانیة (المكونة من عدد طرق  1)m  مجموعة: −

                                                                1

2

1 1
2

2 2 1 2

( )!
!( )!

N n
n

N n N nw C
n n N n n

− −  −
= = =  − − 

 

)عنصر) من أصل الباقي  n3عدد طرق اختیار المجموعة الثالثة (المكونة من  2)m  مجموعة:  −

                                                          1 2

3

1 2( ) 1 2
3

3 3 1 2 3

( )!
!( )!

N n n
n

N n n N n nw C
n n N n n n

− − − −  − −
= = =  − − − 

 

 عنصر): nm(المكونة من  mوھكذا ... عدد طرق اختیار المجموعة المتبقیة الأخیرة رقم 

         1 2 1 1 2 1( .... ) 1 2 1

1 2 1

.... ( .... )! ! 1
! ( .... )! ! 0!
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mN n n n m m
m n

m m m m m
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 ر منفصلة (مستقلة) یكون عدد طرق الاختیار الإجمالي:وبما أن طرق الاختیا

    1 2 3
1 1

!....
! ( )!m

Nw w w w w
n N n

= =
−

1( )!N n−

2 1 2! ( )!n N n n− −
1 2( )!N n n− −

3 1 2 3! ( )!n N n n n− − −

!
..... mn

1

!
! 0! !

m
m

i
i

N
n n

=

=

∏
 

، والثاني كتاب واحد، انباطلاب بحیث یأخذ الأول كت 3على  A,B,C,Dكتب مختلفة  4أوجد عدد طرق توزع  مثال:
 .كتاب واحد والثالث

   








⇔==
),,,(),,,(),,,(),,,(),,,(),,,(
),,,(),,,(),,,(),,,(),,,(),,,(
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  5كتب، والثاني كتاب واحد، والثالث  4طلاب بحیث یأخذ الأول  3تب مختلفة على ك 10أوجد عدد طرق توزع  مثال:

 كتب.        

                                                                      1260
!5!1!4

!1010
5,1,4 ==P 

للقاعة الأولى طالب واحد فقط قاعات إذا علمت أن القدرة الاستیعابیة  ٤على  طلاب 10أوجد عدد طرق توزع  مثال:
 ثلاث طلاب والرابعة أربع طلاب. والقاعة الثانیة طالبان اثنان فقط والثالثة

                                                                      10
1,2,3,4

10 ! 12600
1! 2! 3! 4!

P = = 

 Statistiquesنیة أوجد عدد طرق التبادیل الممكنة لحروف كلمة إحصاء في اللاتی مثال:
 . وبما أنھا موزعة مسبقاً على مجموعات من الأحرف المتماثلة بالشكل: n=12الحل: عدد حروف الكلمة 

                                            )1,1,1,2,1,3,3( ======= euqiatS 

                                                6652800
!1!1!1!2!1!3!3

!1212
1,1,1,2,1,3,3 ==P 

 
 :القیمة الوسطى (التوقع الریاضي)

  حالة التوزع المنفصل: -۱

٩



  بالعلاقة xω)(تابع كثافتھ  xتحسب القیمة الوسطى لمتحول عشوائي منفصل 
∑
∑

=

x

x

x

xx
x

)(

)(

ω

ω
تابع  xω)(وإذا كان  

)(1ي یحقق الشرط الواحدي كثافة احتمال، أ =∑
x

xω فتحسب قیمة ،x   :بالشكل التالي∑=
x

xxx )(ω 

  :ستمرحالة التوزع الم -۲

بالعلاقة   xf)(تابع كثافتھ  xتحسب القیمة الوسطى لمتحول عشوائي مستمر 
∫

∫
=

x

x

dxxf

dxxfx
x

)(

)(
تابع  xf)(وإذا كان  

)(1كثافة احتمال، أي یحقق الشرط الواحدي  =∫
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 توزع برنولي:
 ة منشور ثنائي الحد لنیوتندبالاعتماد على قاع رنوليیعُطى تابع توزع ب
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 یمكن منھا استنتاج المتطابقات الشھیرة (مربع مجموع حدین) و (مكعب مجموع حدین) و .......
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 أو تلقى أربع قطع نقدیة معدنیة متمایزة معاً.  ،تلقى قطعة نقدیة معدنیة أربع مرات متتالیةمثال: 
 .احسب أعداد كافة الأحداث الممكنة -۱المطلوب:        

 .احسب احتمالات وقوع كافة الأحداث الممكنة  -۲                    
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 بالنسبة للكتابة. والعكس صحیح .أربع مرات ھااحتمال ظھور الصورة صفر مرة یساوي احتمال ظھور     
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 بالنسبة للكتابة. والعكس صحیح .ثلاث مرات ھااحتمال ظھور الصورة مرة واحدة یساوي احتمال ظھور     
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 احتمال ظھور الصورة مرتین یساوي احتمال ظھور الكتابة مرتین      
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 على حدة فنجد مجموع احتمالات الظھور لكلٍ من الصورة والكتابة     
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 تابع توزع بواسون:
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 العلاقة:تابع كثافة توزع بواسون ب نعرف

                                                                  ∞<≤= − xe
x
ax a

x

0;
!

)(ω 

 وھو تابع كثافة احتمال لأنھ یحقق الشرط الواحدي: 
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 تابع توزع غوص الطبیعي:
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 العلاقة بین التوزعات:
 ) تابع كثافة بواسون. بات المناسبةاستنتج من برنولي (باستخدام التقری •

Nnلإیجاد تابع كثافة توزع بواسون من كثافة برنولي نفرض التقریب التالي:   p>>1الموافق لـ  >>
 نوجد القیمة التقریبیة للتوافیق 
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 ) تابع كثافة غوص الطبیعي. لمناسبةبات ااستنتج من بواسون (باستخدام التقری •
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